非晚非晚
码龄9年
求更新 关注
提问 私信
  • 博客:1,493,731
    社区:65
    动态:114
    1,493,910
    总访问量
  • 222
    原创
  • 41,507
    粉丝
  • 43
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2016-09-21

个人简介:一往无前,不急不躁,生命不熄,折腾不止!

博客简介:

非晚非晚的博客

博客描述:
一往无前,爱我所爱,生命不息,折腾不止!
查看详细资料
个人成就
  • 获得3,006次点赞
  • 内容获得437次评论
  • 获得16,660次收藏
  • 代码片获得46,263次分享
  • 博客总排名311,289名
创作历程
  • 7篇
    2024年
  • 7篇
    2023年
  • 65篇
    2022年
  • 122篇
    2021年
  • 25篇
    2020年
成就勋章
TA的专栏
  • C/C++编程
    38篇
  • Python
    21篇
  • python tools
    8篇
  • pytorch
    21篇
  • 深度学习
    14篇
  • 论文阅读笔记
    3篇
  • 目标检测实战
    10篇
  • 自动驾驶
    2篇
  • 数学理论与工具
    10篇
  • open3d
    6篇
  • PCL
    18篇
  • OpenCV_CPP
    8篇
  • OpenCV_python
    2篇
  • Linux
    10篇
  • ROS
    13篇
  • GPU&CUDA
    5篇
  • git
    6篇
  • Docker
    2篇
  • 算法与数据结构
    6篇
  • Qt
    2篇
  • SLAM
    10篇
  • 数学理论与代码实现
    3篇
  • leetcode
    10篇
  • 工具
    4篇
  • 计算机基础
    1篇
  • 解决问题汇总
    7篇
  • 个人

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 8

TA参与的活动 4

兴趣领域 设置
  • 人工智能
    计算机视觉人工智能深度学习自动驾驶
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

【MIT-BEVFusion代码解读】第三篇:camera的encoder部分

camera的encoder主要有3部分,分别是backboneneck和vtransform部分。其中backbone使用neck使用vtransform部分使用的是,如下所示。fill:#333;color:#333;color:#333;fill:none;使用使用使用backboneneckvtransform调用的顺序分别为,具体代码如下所示。
原创
博文更新于 2025.02.26 ·
3702 阅读 ·
37 点赞 ·
0 评论 ·
55 收藏

ROS中的日志log消息与ROS终端的不同颜色输出

ROS自带了大量的能够输出调试信息的函数和宏,包括错误,警告等.它提供了如信息级别,条件触发消息和STL的流接口等方式。1. 日志消息1.1 rosout的日志1.2 日志文件2. 日志等级2.1 基础介绍2.2 举例2.3 设置日志级别3. ROS日志其它说明3.1 单次输出3.2 设置输出频率4. ROS终端颜色输出
原创
博文更新于 2025.02.25 ·
5158 阅读 ·
11 点赞 ·
0 评论 ·
49 收藏

ubuntu上常用的软件安装

记录ubuntu下常用软件的安装,避免每次安装查询,包括一些常用的配置。
原创
博文更新于 2025.01.02 ·
8778 阅读 ·
14 点赞 ·
1 评论 ·
100 收藏

Linux常用命令----好记性不如烂笔头

好记性不如烂笔头,记录总结一下常用的Linxu命令,后续也会时不时的更新。
原创
博文更新于 2024.12.12 ·
2723 阅读 ·
30 点赞 ·
1 评论 ·
181 收藏

【MIT-BEVFusion代码解读】第一篇:整体结构与config参数说明

模型BEVFusion,内部包含四个模块。encoderfuserdecoder和head。它们之间的流程图如下所示。下面就这四部分的主要参数进行简要说明,具体的流程会在后续的文章展开。
原创
博文更新于 2024.09.04 ·
3949 阅读 ·
30 点赞 ·
2 评论 ·
52 收藏

【MIT-BEVFusion代码解读】第四篇:融合特征fuser和解码特征decoder

的大小,实际上源代码也是这么做的。最后将得到两个分支的特征进行。,第一个特征使用卷积降低通道数即可,第二个则需要反卷积来提升。所以backbone只有两个分支,都是5个卷积模块组成。的长和宽都减半至90,然后在经过5个相同的。将通道降至128,后面再接5个相同的。,将通道数128上至256,并且将。特征进行融合,这里使用的。部分由两部分组成,分别是。,这个分支首先经过第一个。,然后再卷积得到 =>提取特征,最后得到特征。得到了两个大小不同的。
原创
博文更新于 2024.08.29 ·
2539 阅读 ·
6 点赞 ·
1 评论 ·
13 收藏

【MIT-BEVFusion代码解读】第二篇:LiDAR的encoder部分

稀疏卷积常用于3D项目(如3D点云分割)中,由于点云数据是稀疏的,无法使用标准的卷积操作。同理,2D任务中,如果只处理其中一部分像素,也需要使用稀疏卷积,这样有助于模型加速。​ 本质上就是通过建立哈希表,保存特定位置的计算结果。稀疏卷积和普通卷积没有区别,最重要的区别在于卷积的数据的存储方式和计算方法,这种计算方法可以增加计算稀疏点云的效率,其他的都是完全相同的(但SubMConv3d还是稍微有点区别的,只有中心kernel覆盖值才计算),唯一多了一个indice_key,这是为了在indice。
原创
博文更新于 2024.08.29 ·
3383 阅读 ·
34 点赞 ·
0 评论 ·
34 收藏

MIT-BEVFusion训练环境安装以及问题解决记录

训练代码对pytorch有要求,所以需要找到对应的CUDA版本,这里我安装的是11.3版本。也可能是cuda与torch版本不匹配,需要进pytorch官网查询对应版本。照抄就行,经过验证。如果你的cuda不是11.03,可以进入。:yapf包的版本问题,降低为yapf==0.40.1。下载安装openmpi,要不然会报mpi错误。:setuptools版本过高导致。:setuptools版本过高导致。查询需要安装的torch版本。
原创
博文更新于 2024.08.29 ·
1568 阅读 ·
7 点赞 ·
0 评论 ·
18 收藏

【论文阅读】ICRA 2023|BEVFusion:Multi-Task Multi-Sensor Fusion with Unified Bird‘s-Eye View Representation

BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird’s-Eye View Representation发表单位:MIT发表期刊:ICRA 2023多传感器融合对于准确和可靠的自动驾驶系统至关重要。最近的方法基于点级()融合方法:使用图像特征对激光点云进行增强。但是,相机到激光()投影的方法丢掉了图像的语义密度,特别对于3D场景分割任务。在本文中,我们使用BEVFusion。
原创
博文更新于 2024.08.29 ·
2444 阅读 ·
27 点赞 ·
1 评论 ·
35 收藏

anaconda的安装和使用

Anaconda是python开发环境特好用的一个工具,可以让你的python环境不受外界干扰,在同一机器上不同python工程提供了方便。
原创
博文更新于 2024.08.02 ·
1655 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

【深度学习基础】学习率(learning rate)的理解与分类

1. 训练与学习率的关系2. 学习率的衰减策略(1)分段常数衰减(2)指数衰减(3)自然指数衰减(4)多项式衰减(5)余弦衰减(6)Lambda学习率3. 周期性学习率(1)循环学习率(2)带热重启的随机梯度下降4. 自适应学习率(1)Adagrad算法(2)RMSprop算法(3)AdaDelta算法
原创
博文更新于 2024.07.22 ·
23463 阅读 ·
32 点赞 ·
0 评论 ·
324 收藏

【pytorch学习实战】第四篇:MNIST数据集的读取、显示以及全连接实现数字识别

MNIST包含70,000张手写数字图像: 60,000张用于训练,10,000张用于测试。图像是灰度的,28x28像素的,并且居中的,以减少预处理和加快运行。下面使用torchvision读取数据,并使用DataLoader加载数据,最后使用matplotlib显示其中6张图片数据和对应的真值。
原创
博文更新于 2024.07.22 ·
23186 阅读 ·
24 点赞 ·
4 评论 ·
136 收藏

自动驾驶领域中常见英文缩写、相关含义以及常用专业英文

从事自动驾驶行业也有好几年了,对一些自动驾驶相关缩写和英文也了解不少,但是没有系统总结过,有空把它们重新总结一下以备以后查看,也给刚入门的朋友们进行科普。同时也欢迎朋友们更新补充!
原创
博文更新于 2024.07.22 ·
25627 阅读 ·
26 点赞 ·
1 评论 ·
149 收藏

【点云处理技术之open3d】第一篇:open3d的快速安装、简介、文件的读写和可视化操作

Open3D是一个开源库,支持快速开发和处理3D数据。Open3D在c++和Python中公开了一组精心选择的数据结构和算法。后端是高度优化的,并且是为并行化而设置的。Open3D的核心功能包括:3D 数据结构3D 数据处理算法场景重建表面对齐3D 可视化基于物理渲染 (PBR)支持使用 PyTorch 和 TensorFlow 的 3D 机器学习内核 3D 操作的 GPU 加速在C ++ 和 Python 中可用
原创
博文更新于 2024.07.22 ·
33761 阅读 ·
37 点赞 ·
5 评论 ·
282 收藏

C/C++中的ctime用法总结

头文件time.h为C语言当中的头文件,被C++继承过来。可以结合chrono进行使用。
原创
博文更新于 2024.07.22 ·
30671 阅读 ·
27 点赞 ·
5 评论 ·
216 收藏

gtsam:从入门到使用

一. 总览二. 贝叶斯网络和因子图三. 机器人运动建模3.1 使用因子图建模3.2 建立因子图3.3 因子图与变量3.4 GTSAM中的非线性优化3.5 全后验推论四. 机器人定位4.1 一元测量因子4.2 自定义因子4.3 使用自定义因子4.4 全后验推论五. PoseSLAM5.1 闭环约束5.2 使用Matlab接口5.3 读取和优化姿态图5.4 3D中的poseSLAM六. 基于Landmark的slam6.1 基础6.2 Keys和Symbols6.3 A
原创
博文更新于 2024.07.22 ·
33945 阅读 ·
122 点赞 ·
16 评论 ·
506 收藏

pandas读取excel的方式介绍、行列元素访问以及读取数据后使用matplotlib画折线图

pandas是基于Numpy创建的Python包,内置了大量标准函数,能够高效地解决数据分析数据处理和分析任务,pandas支持多种文件的操作,比如Excel,csv,json,txt 文件等,读取文件之后,就可以对数据进行各种清洗、分析操作了。下面我们这里介绍一下如何使用pandas读取excel文件,以及使用它结合matplotlib进行画图。
原创
博文更新于 2024.07.22 ·
53210 阅读 ·
65 点赞 ·
0 评论 ·
333 收藏

介绍几种使用C/C++语言判断一个文件是否存在的方法

1. 方法一:C语言之access2. 方法二:C++语言之access3. 方法三:C++方法之ifstream4. 方法四:fopen方法5. 方法五:sys中的stat函数方法
原创
博文更新于 2024.07.22 ·
45795 阅读 ·
36 点赞 ·
5 评论 ·
144 收藏

python中pip和pip3的区别、使用以及加速方法

pip 是 Python 的包安装程序。其实,pip 就是 Python 标准库(The Python Standard Library)中的一个包,只是这个包比较特殊,用它可以来管理 Python 标准库(The Python Standard Library)中其他的包。该工具提供了对Python 包的查找、下载、安装、卸载等功能。...
原创
博文更新于 2024.07.22 ·
59548 阅读 ·
64 点赞 ·
2 评论 ·
280 收藏

【python基础】python中常用字符串函数详解

1 字符串查询(index,find)2. 字符串大小写转换操作(upper、lower、swapcase、capitalize和title)3. 字符串对齐(center,just和zfill)4. 分割字符串(split、splitlines和partition)5. 合并与替换(join,replace)6. 判断字符串(isidentifier、isspace、isalpha、isdecimal、isnumeric和isalnum等)7. 字符串的比较(,max,min等)去除两端多余字符操作...
原创
博文更新于 2024.07.19 ·
34279 阅读 ·
129 点赞 ·
13 评论 ·
851 收藏
加载更多