Python_金钱豹
码龄4年
求更新 关注
提问 私信
  • 博客:3,025,601
    社区:3
    3,025,604
    总访问量
  • 1,841
    原创
  • 513
    排名
  • 10,112
    粉丝
  • 18
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
加入CSDN时间: 2021-11-02
博客简介:

Python_cocola的博客

查看详细资料
个人成就
  • 获得28,582次点赞
  • 内容获得612次评论
  • 获得33,113次收藏
  • 代码片获得13,133次分享
  • 原力等级
    原力等级
    9
    原力分
    14,234
    本月获得
    313
创作历程
  • 938篇
    2025年
  • 530篇
    2024年
  • 103篇
    2023年
  • 246篇
    2022年
  • 28篇
    2021年
成就勋章
TA的专栏
  • 程序员
    276篇
  • Python
    277篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

TA的推广
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

一文读懂Agent架构设计:从原理到实现,智能体技术深度解析,建议收藏!

1正文开始之前,先给我自己打个广告,回到正题。:该模块的主要功能是对Agent的角色进行识别,解决的核心问题是:我的身份是什么?我处于什么位置?我应该执行哪些任务?这一模块适用于各种协同场景,包括人与人、人与智能体、以及智能体之间的协同。:记忆模块负责信息的存储、提取和查询,是智能体知识管理的基础。):此模块负责根据历史行为和目标来动态规划智能体的未来行动步骤。:该模块负责实施智能体的决策,确保智能体的行为能够得到有效执行。以下对 Agent 智能体架构设计的4个模块做详细剖析。1。
原创
博文更新于 16 小时前 ·
1017 阅读 ·
24 点赞 ·
0 评论 ·
21 收藏

DeepSeek+LangChain:保姆级全流程RAG实战(从入门到精通),收藏这一篇就够了!

本文介绍了基于LangChain框架实现RAG(检索增强生成)技术的完整流程。首先解释了RAG概念及LangChain特点,然后详细演示了7个步骤:1)环境准备;2)调用DeepSeek API;3)文档加载与分割;4)文本嵌入与向量存储;5)重排优化;6)提示词模板设计;7)构建处理链。文章还提供了大模型学习的四阶段路径:初阶应用(10天)、高阶应用(30天)、模型训练(30天)和商业闭环(20天),涵盖从基础应用到私有化部署的全套技能。最后强调持续学习的重要性,建议读者系统性地掌握AI技术。
原创
博文更新于 20 小时前 ·
814 阅读 ·
19 点赞 ·
0 评论 ·
32 收藏

别再只看聊天了!大模型真正的“智商”如何?上海AI实验室发布临床推理能力评估标准,这篇干货太顶了!

本文提出了一种系统性评估临床大模型推理能力的方法,通过构建包含1453例结构化病例的MedR-Bench评估集,将临床任务设计为检查推荐、诊断决策和治疗方案制定三个阶段。研究采用自动化的Reasoning Evaluator结合医生人工核查,从效率、事实正确性和完整性三个维度评估7个代表性推理大模型的表现。结果显示,当前模型在诊断环节表现优异,但在检查推荐和治疗规划方面仍有不足,推理完整性仅70-80%。研究特别关注罕见病场景,发现开源模型性能接近闭源系统,为临床AI的本地化部署提供了可能。该方法为构建科室
原创
博文更新于 21 小时前 ·
491 阅读 ·
11 点赞 ·
0 评论 ·
4 收藏

企业RAG实战:从常见问题到解决方案(非常详细,入门到精通,收藏这一篇!)

RAG技术(检索增强生成)通过文档处理、数据召回和增强生成三个阶段提升大模型效果,但在实际应用中存在诸多挑战。文档处理面临多格式解析、信息丢失等难题;数据召回存在语义检索不准问题,需通过优化查询、多维度召回等方式改进;增强生成阶段则需对召回结果进行清洗和格式化。尽管智能体技术为RAG带来动态数据获取能力,但整体优化仍需平衡成本与效果。同时,文章提供了AI大模型分阶段学习路径,涵盖从基础应用到模型训练再到商业落地的完整知识体系,帮助学习者系统掌握大模型技术。
原创
博文更新于 22 小时前 ·
954 阅读 ·
15 点赞 ·
0 评论 ·
24 收藏

彻底搞懂AI Agent!7大认知框架+源码,这篇万字长文帮你从入门到精通!

AI Agent认知框架设计与实现解析 摘要:AI Agent正迎来发展黄金期,其核心能力在于通过大语言模型从人类语料中提炼判断力。目前业界提出了多种认知框架设计模式,包括吴恩达总结的反思、工具使用、规划、多智能体协作4种模式,以及Lilian Weng提出的规划、记忆、工具、执行四大技术架构要素。本文重点解析了7种主流认知框架的具体实现方法:思维链(CoT)通过逻辑推理步骤提升决策透明度;自问自答(Self-Ask)增强深度分析能力;批判修正(Critique Revise)通过迭代优化决策质量。这些框架
原创
博文更新于 23 小时前 ·
696 阅读 ·
15 点赞 ·
0 评论 ·
17 收藏

我愿称之为AI Agent最伟大的网站!!!

想深入了解 AI Agent 的发展路线,却发现大部分资料分布在各个方向,找论文、整理资料让我们颇为头大。 我把Agent的学习全流程已经整理📚好了,适合正在研究Agent 技术的同学。都放在知识库了,希望对大家有帮助!
原创
博文更新于 前天 16:52 ·
48 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

一个AI智能体,干掉一个客服团队?企业级客服系统搭建全攻略,成本直降90%!

本文介绍如何搭建一个低成本的企业级AI客服系统。针对电商公司每天5000+咨询量的需求,提出完整的解决方案,包括架构设计、核心代码实现和部署方案。系统采用分层设计,包含用户接入层、智能体核心层和数据存储层,核心模块涵盖意图识别、对话管理、知识检索等。使用Python+FastAPI等技术栈,月成本控制在500元以内。文章提供3500字详细指南,包含架构图、代码示例和部署说明,适合企业自行搭建高效客服系统。
原创
博文更新于 前天 13:15 ·
1254 阅读 ·
35 点赞 ·
0 评论 ·
16 收藏

AI的“巴别塔”正在倒塌?从CLIP到Qwen3-Omni,我们离模态大一统还有多远?

通过“组装”预训练好的多个大模型(视觉、语言、音频等),再用少量配对数据或高质量蒸馏数据进行轻量对齐,使大模型具备视觉理解、生成、推理能力。
原创
博文更新于 前天 12:45 ·
323 阅读 ·
10 点赞 ·
0 评论 ·
10 收藏

RAG技术终极指南:企业级文档问答系统构建秘籍,Meta Chunking切分详解,收藏这一篇就够!

由中国人民大学和上海算法创新研究院在2024年10月份提出了一种新的文本切分方法,以提升切分效果,从而改善RAG的效果。论文中提出了Meta Chunking的概念,它指的是句子和段落之间的颗粒度,我的理解是一种文本块。
原创
博文更新于 前天 10:09 ·
483 阅读 ·
19 点赞 ·
0 评论 ·
17 收藏

RAG开发太痛苦?3大核心痛点与终极解决方案,一文彻底搞定!

本文探讨了RAG(检索增强生成)系统中的12个常见痛点及其解决方案。受Barnett论文启发,文章首先分析了7个关键失败点,包括内容缺失、文档检索排名不佳和上下文整合问题,并提出了数据清理、提示词优化、参数调整和重排序等解决方法。随后补充了5个额外痛点,如检索策略优化和嵌入模型微调。作者强调通过LlamaIndex工具进行超参数调优、自定义重排序器开发等具体技术手段,可以有效预防这些痛点演变为系统故障。文章提供了详细的代码示例,展示了如何通过技术手段提升RAG系统的准确性和可靠性,最终实现更高质量的检索增强
原创
博文更新于 前天 10:04 ·
674 阅读 ·
20 点赞 ·
0 评论 ·
8 收藏

多Agent协作终极宝典!从入门到精通,打造智能业务流程看这篇就够了!

在现代智能系统中,单个AI难以应对复杂场景的挑战。通过多Agent协作,我们可以将复杂问题分解为专业子任务,由不同Agent协同解决,实现1+1>2的效果。本演示将通过四个真实场景,展示不同Agent如何在MCP(Model Context Protocol,模型上下文协议)的协调下高效协作,完成复杂业务流程。
原创
博文更新于 前天 10:02 ·
623 阅读 ·
21 点赞 ·
0 评论 ·
8 收藏

FastGPT Agent ReAct 原理全解析!从源码到实战,吃透这一篇就够了!

本文介绍了 ReAct 、Plan-and-Execute 两种大模型推理模式,以及 FastGPT 对 ReAct 的三种实现方式。ReAct(Reasoning and Acting),让大模型通过「观察-思考-行动」三个步骤,循环往复,能够自主决定使用一些工具去解决问题。从代码层面来讲,本质是递归(or 循环),而递归结束的条件往往是超过次数限制、问题已经得到解决等条件。Plan-and-Execute,相较于 ReAct,会先让大模型制定计划、步骤(子任务),然后按照计划依次执行。
原创
博文更新于 前天 09:57 ·
792 阅读 ·
10 点赞 ·
0 评论 ·
13 收藏

为什么你的RAG总是“一本正经地胡说八道”?EAG-RAG揭示真相,准确率暴涨300%的秘密!

摘要:EAG-RAG(智能体增强检索增强生成)技术通过构建闭环自优化工作流程,克服了大语言模型在知识时效性、幻觉问题和私有数据访问方面的局限。系统采用深度知识工程(结构化识别、元数据注入)、智能预处理(查询优化、混合检索)和内容生成优化(答案精炼、反馈机制)的三阶段架构,实现企业级知识问答。其核心创新在于将LLM智能体部署于全流程关键节点,形成数据驱动的持续改进闭环,显著提升了准确性、可维护性和知识更新能力,代表了RAG技术向自主化、智能化演进的最新方向。(150字)
原创
博文更新于 2025.12.17 ·
767 阅读 ·
12 点赞 ·
0 评论 ·
12 收藏

推理框架大洗牌!浙大&阿里提出增强型LLM推理引擎,从原理到实测,彻底搞懂33倍吞吐量提升的秘密!

摘要:浙江大学与阿里团队提出AugServe框架,通过两阶段自适应调度策略和动态token批处理机制,有效解决增强型大语言模型推理服务中的队头阻塞和静态批处理问题。实验表明,相比vLLM和InferCept,AugServe在有效吞吐量上提升4.7-33.1倍和3.3-13.2倍,并将首token延迟降低96.3%和95.0%。该框架包含预测模块、调度模块和动态批处理模块,能根据实时负载和硬件状态优化请求处理顺序,显著提升服务效率。论文《AugServe: Adaptive Request Scheduli
原创
博文更新于 2025.12.17 ·
329 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

AI“内卷”太严重?谷歌级框架COCOM出手,让AI团队学会高效沟通,告别“摸鱼”!

本文提出了一种基于共识的多智能体通信框架COCOM,通过结合隐式共识与显式通信实现高效协作。该框架包含全局/局部共识生成器和消息生成器,利用VAE结构和KL散度确保共识一致性,并通过门控机制动态控制通信。实验在Hallway、SMAC和GRF环境中验证,COCOM在保持最高胜率的同时显著降低通信开销。相比基线算法,该框架展现出更好的协作性能和通信效率,为多智能体强化学习的实际应用提供了新思路。
原创
博文更新于 2025.12.17 ·
275 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

别再让AI“自由发挥”了!手把手教你配置LLM输出,让AI回答精准可控,这篇干货太顶了!

输出参数决定了 LLM 的“边界与风格”,工程化配置是高质量 AI 产出的关键。在大语言模型(LLM, Large Language Model)应用中,输出行为并非仅由模型本身决定,而是由一组可调参数共同塑造。提示词(Prompt)定义任务意图,输出参数则决定生成边界。工程系统中,输出参数与提示词同等重要,直接影响稳定性、可控性、性能与成本。本章以体系化视角对输出控制进行建模,避免碎片化解释,建立一套可复用的参数选择框架。下方结构图展示了 LLM 在一次生成过程中,各类输出参数的应用顺序与层次。
原创
博文更新于 2025.12.17 ·
815 阅读 ·
12 点赞 ·
0 评论 ·
20 收藏

给AI“考题”换个计分方式,谷歌SigLIP让多模态模型学得又快又好!

图 1 总结了CLIP这种方法背后的关键概念。我们有一个文本嵌入和一个对应的图像嵌入,它们应该代表相同的概念,在这个例子中是“靠近运河的风车”。通常,训练数据量是巨大的,例如 CLIP 就是在 4 亿个文本-图像对上训练的。在训练过程中,CLIP 的作者使用了 32K 对图像-文本对的批大小(batch size)。在我们的示例中,我们仅使用 4 的批大小。因此,我们得到一个 的相似性矩阵。正如在 [CLIP]论文中所述,目标是增加正样本对(此处为绿色)之间的相似性,并降低负样本对之间的相似性。
原创
博文更新于 2025.12.17 ·
724 阅读 ·
18 点赞 ·
0 评论 ·
20 收藏

别再拍脑袋做决策了!一套可落地的经营分析框架,手把手教你从0到1搭建,建议收藏!

摘要:当前企业经营面临"三重变革"与"三重困境"的挑战,需要构建连接战略与执行、贯通业务与财务的闭环分析体系。本文提出"三维视角"经营分析框架:业务逻辑聚焦行业本质,财务逻辑实现量化表达,管理逻辑确保目标落地。通过五维分层体系(战略对齐、业务运营、财务表现、风险预警、价值创造)实现双向联动,配套实战工具与案例,帮助企业突破数据表象,触及经营本质,将分析转化为实际增长动力。同时提供《企业经营分析框架及实操指南》等全套资源,助力企业实现精益管理与持续盈
原创
博文更新于 2025.12.17 ·
820 阅读 ·
37 点赞 ·
0 评论 ·
16 收藏

保姆级教程!把AI大模型训练过程揉碎了讲给你听,小白也能秒懂!

站在大语言模型外部看需要准备些什么样的训练数据,分什么阶段,怎样去训练大语言模型,把大语言模型看成一个黑盒。LLM都是如何训练出来的呢?**GPT的训练**分为以下3个阶段:1、预训练Pretrain2、监督微调SFT (Supervised Fine-Tuning)3、基于反馈的强化学习RLHF(包含了Reward Model、PPO (Proximal Policy Optimization)
原创
博文更新于 2025.12.17 ·
389 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

AI大模型入门到精通,还差这关键一步!李飞飞带你读懂Agent AI,建议收藏!

李飞飞教授团队在其论文《Agent AI: Surveying the Horizons of Multimodal Interaction》中,描述了多模态智能体(AI Agent)的框架和发展路线。科学家们思路清晰。
原创
博文更新于 2025.12.16 ·
928 阅读 ·
14 点赞 ·
0 评论 ·
11 收藏
加载更多