AI大模型时代已经开始显露出颠覆传统开发范式的趋势,新的应用开发模式正在逐渐显现。LangChain是一个可以用Javascript来进行开发的大模型应用开发框架,它本质上也提供了一种用大模型来进行应用开发的成熟的技术路线/框架。本期节目详细讲解了这个成熟的技术路线是怎么利用大模型来进行应用的。
什么是LangChain?
LangChain本身是一个开源开发框架,目前提供Python和Js两种版本,它以大模型作为其核心依赖之一,以让实现应用目标更便捷
LangChain的核心理念:
- 数据感知:将语言模型与其他数据源连接在一起
- 主动性:允许语言模型与其环境进行交互
- 链性:应用模块/组件之间以链的形式组合在一起
LangChain框架本身实现了很多组件
LangChain的诞生,实际上出现了一种架构,提供了一种利用GPT进行应用开发的成熟技术路线,这种架构的核心思想就是Chain(链)
Chain的思路,对实现某种流程非常有帮助,而很多企业应用,都是流程式的应用。Chain的概念的本质,就是一种处理流程模型,也就是把要做成功一件事,应该按照什么流程才能成功进行了抽象。它比某种具体的模型层次更高,不同的业务模型都可以借助相同的Chain实现目标,Chain是对流程范式的抽象。Chain也有多种,比如串行链、并行链、路由链。
它背后的思想其实也是我们做事的方法,就是我把一个复杂的大目标,拆分成多个阶段的任务,不断拆分子任务,通过按照顺序完成小任务之后,不断积累,最终完成整个目标
LangChain应用的模块/要素
-
Chains,链
- Executors,执行器
-
Model I/O,模型
-
Prompt,提示
- PromptTemplate
- Example Selectors
-
Chat Models
-
LLMs
-
Output parsers
-
-
Retrieval,数据检索
- Document loaders,文档加载
- Document transformers,文档转化
- Text embedding models,文本嵌入模型
- Vector Stores,向量存储器
- Retrievers,检索器
- Indexing,索引
-
Agents,代理
- Tools, Toolkits
-
Memory,内存,
- Chat Message,聊天记录
LangChain应用架构


LangChain的应用方向
RAG(Retrieval Augmented Generation,检索增强生成),基于LangChain+检索来实现内容生成的应用技术
- RAG Search
- 企业知识库
- 垂直行业信息咨询
- 智能聊天机器人(客服)
- 摘要
Agents,reasoning engines 推理引擎,基于 LLMs 的理解任务、拆解任务、执行任务的集合,换一个理解就是基于大模型的自动化,核心点在于:1. 通过大模型来理解任务、拆分任务和执行任务的方式,把大模型作为该目标的“打工人”;2. 可以通过执行器(Executor)反复调用工具(Tool)API完成任务目标,也就是为“打工人”提供生产资料
- 角色扮演:法律助手、订票助手、行业专家
- 数据处理:数据整理、分析、报表制作、报告制作、告警
- 编程、程序制作、网站开发,测试、调试、自动修复bug
- 电影制作
- 行业调研、商业决策
本质上,RAG其实是Agents的一种简化特例,即Agents的理解、拆解部分可按照RAG的架构实现
LangChain有哪些应用产品
- AutoGP
- BabyAGI
2025开年,AI技术打得火热,正在改变前端人的职业命运:
阿里云核心业务全部接入Agent体系;
字节跳动30%前端岗位要求大模型开发能力;
腾讯、京东、百度开放招聘技术岗,80%与AI相关……
大模型正在重构技术开发范式,传统CRUD开发模式正在被AI原生应用取代!
最残忍的是,业务面临转型,领导要求用RAG优化知识库检索,你不会;带AI团队,微调大模型要准备多少数据,你不懂;想转型大模型应用开发工程师等相关岗,没项目实操经验……这不是技术焦虑,而是职业生存危机!
曾经React、Vue等热门的开发框架,已不再是就业的金钥匙。如果认为会调用API就是懂大模型、能进行二次开发,那就大错特错了。制造、医疗、金融等各行业都在加速AI应用落地,未来企业更看重能用AI大模型技术重构业务流的技术人。
如今技术圈降薪裁员频频爆发,传统岗位大批缩水,相反AI相关技术岗疯狂扩招,薪资逆势上涨150%,大厂老板们甚至开出70-100W年薪,挖掘AI大模型人才!

不出1年 “有AI项目开发经验”或将成为前端人投递简历的门槛。
风口之下,与其像“温水煮青蛙”一样坐等被行业淘汰,不如先人一步,掌握AI大模型原理+应用技术+项目实操经验,“顺风”翻盘!
大模型目前在人工智能领域可以说正处于一种“炙手可热”的状态,吸引了很多人的关注和兴趣,也有很多新人小白想要学习入门大模型,那么,如何入门大模型呢?
下面给大家分享一份2025最新版的大模型学习路线,帮助新人小白更系统、更快速的学习大模型!
2025最新版CSDN大礼包:《AGI大模型学习资源包》免费分享**
一、2025最新大模型学习路线
一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

L1级别:AI大模型时代的华丽登场
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。

L2级别:AI大模型RAG应用开发工程
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

L3级别:大模型Agent应用架构进阶实践
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。

L4级别:大模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。
二、大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)

三、大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。

四、大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

五、大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取


1060

被折叠的 条评论
为什么被折叠?



