用Python分析告诉你:一个城市麦当劳的数量和什么有关!

本文通过分析中国各大城市麦当劳店铺数量,探讨城市等级、GDP及人口数对其分布的影响。研究发现,城市等级和GDP与麦当劳店铺数量呈正相关,而人口数的影响相对较小。
部署运行你感兴趣的模型镜像

一、前言

前几天,小编跟着两个朋友,在深圳的商圈逛了逛,沿途看见了好几家麦当劳,他们两就随意的说了说,麦当劳数量有点多呢,到底是为什么呢? 一个城市的麦当劳数量和什么有关呢? GDP? 等级? 人口数? 。 。 。 。

为了更有理有据的说明,小编选取了 GDP,城市等级,人口数三个指标初步探一探城市麦当劳数的多少和什么有关

 

二、源码获取

 

三、数据获取

麦当劳店铺名和所在城市

https://www.mcdonalds.com.cn/index/Quality/publicinfo/deliveryinfo?data%5BSearch%5D%5Bcity%5D=

2019 城市排行

http://www.zuihaodaxue.com/news/20190525-1003.html

GDP,人口

http://caifuhao.eastmoney.com/news/20190201115604564011000

从上面三个链接获取,店名,所在城市,GDP,城市等级,人口数

网页都比较简单静态的,爬虫正则直接提取

城市店铺数

此图列举了麦当劳在中国城市所有店铺数各个城市的数量有多少,从图可看出,‘北上广深’麦当劳数可是都在 100 以上,稳居前四,而且他们都是一线大城市呢,紧随其后的一些城市麦当劳数也在两位数,会不会与城市等级有关呢?

四、城市等级对应麦当劳占比

从上图看出,全国城市等级所对应的麦当劳占比,一线,二线,三线,四线,五线,一次递减,一线城市拥有的麦当劳数时最多的,从而验证了我们的想法,城市等级越高,麦当劳数也相应的多一些

五、GDP&店铺数

GDP 看来也是一个影响一个城市麦当劳数的因素呀,从图看出,GDP 与麦当劳数呈正相关,一个城市的 GDP 是衡量一个城市经济水平的因素,看来也可以衡量是否能吸引更多的像麦当劳一样的企业进驻此城市

六、人口数&店铺数

呃呃呃,看来人口的多少与店铺数关联不是很大,人口 0-500 万左右的店铺数基本都不超过 50 家

七、结论

仅从城市等级,GDP 等级看, GDP 越高,相应的店铺数也会多一些,但人口数的多少对麦当劳的店铺数影响不是很大

除此之外,还没有考虑每个城市相关的政策之类的因素

生活中更多有趣结论等你探索~

 

您可能感兴趣的与本文相关的镜像

Python3.9

Python3.9

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

内容概要:本文为《科技类企业品牌传播白皮书》,系统阐述了新闻媒体发稿、自媒体博主种草与短视频矩阵覆盖三大核心传播策略,并结合“传声港”平台的AI工具与资源整合能力,提出适配科技企业的品牌传播解决方案。文章深入分析科技企业传播的特殊性,包括受众圈层化、技术复杂性与传播通俗性的矛盾、产品生命周期影响及2024-2025年传播新趋势,强调从“技术输出”向“价值引领”的战略升级。针对三种传播方式,分别从适用场景、操作流程、效果评估、成本效益、风险防控等方面提供详尽指南,并通过平台AI能力实现资源智能匹配、内容精准投放与全链路效果追踪,最终构建“信任—种草—曝光”三位一体的传播闭环。; 适合人群:科技类企业品牌与市场负责人、公关传播从业者、数字营销管理者及初创科技公司创始人;具备一定品牌传播基础,关注效果可量化与AI工具赋能的专业人士。; 使用场景及目标:①制定科技产品全生命周期的品牌传播策略;②优化媒体发稿、KOL合作与短视频运营的资源配置与ROI;③借助AI平台实现传播内容的精准触达、效果监测与风险控制;④提升品牌在技术可信度、用户信任与市场影响力方面的综合竞争力。; 阅读建议:建议结合传声港平台的实际工具模块(如AI选媒、达人匹配、数据驾驶舱)进行对照阅读,重点关注各阶段的标准化流程与数据指标基准,将理论策略与平台实操深度融合,推动品牌传播从经验驱动转向数据与工具双驱动。
【3D应力敏感度分析拓扑优化】【基于p-范数全局应力衡量的3D敏感度分析】基于伴随方法的有限元分析p-范数应力敏感度分析(Matlab代码实现)内容概要:本文档围绕“基于p-范数全局应力衡量的3D应力敏感度分析”展开,介绍了一种结合伴随方法与有限元分析的拓扑优化技术,重点实现了3D结构在应力约束下的敏感度分析。文中详细阐述了p-范数应力聚合方法的理论基础及其在避免局部应力过高的优势,并通过Matlab代码实现完整的数值仿真流程,涵盖有限元建模、灵敏度计算、优化迭代等关键环节,适用于复杂三维结构的轻量化与高强度设计。; 适合人群:具备有限元分析基础、拓扑优化背景及Matlab编程能力的研究生、科研人员或从事结构设计的工程技术人员,尤其适合致力于力学仿真与优化算法开发的专业人士; 使用场景及目标:①应用于航空航天、机械制造、土木工程等领域中对结构强度重量有高要求的设计优化;②帮助读者深入理解伴随法在应力约束优化中的应用,掌握p-范数法处理全局应力约束的技术细节;③为科研复现、论文写作及工程项目提供可运行的Matlab代码参考与算法验证平台; 阅读建议:建议读者结合文中提到的优化算法原理与Matlab代码同步调试,重点关注敏感度推导与有限元实现的衔接部分,同时推荐使用提供的网盘资源获取完整代码与测试案例,以提升学习效率与实践效果。
评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值