起薪2万的爬虫工程师,Python需要学到什么程度才可以就业?

文章讲述了Python爬虫工程师的薪资水平以及面试中常被考察的技术点,包括Python基础知识、数据结构与算法、Python爬虫相关知识和项目经验。面试者需要熟悉Python2.x与Python3.x的区别、装饰器、异步,掌握数据结构、多线程,并有爬虫项目实践经验,如使用Scrapy框架、处理反爬策略等。此外,了解数据库操作和分布式爬虫也是加分项。

在这里插入图片描述
爬虫工程师的的薪资为20K起,当然,因为大数据,薪资也将一路上扬。那么,Python需要学到什么程度呢?今天我们来看看3位前辈的回答。

1、前段时间快要毕业,而我又不想找自己的老本行Java开发了,所以面了很多Python爬虫岗位。

因为我在南京上学,所以我一开始只是在南京投了简历,我一共面试了十几家企业,其中只有一家没有给我发offer,其他企业都愿意给到10K的薪资,不要拿南京的薪资水平和北上深的薪资水平比较,结合面试常问的问题类型说一说我的心得体会。
在这里插入图片描述

第一点:Python

因为面试的是Python爬虫岗位,面试官大多数会考察面试者的基础的Python知识,包括但不限于:

  • Python2.x与Python3.x的区别
  • Python的装饰器
  • Python的异步

Python的一些常用内置库,比如多线程之类的

第二点:数据结构与算法

数据结构与算法是对面试者尤其是校招生面试的一个很重要的点,当然小公司不会太在意这些,从目前的招聘情况来看对面试者的数据结构与算法的重视程度与企业的好坏成正比,那些从不问你数据结构的你就要当心他们是否把你当码农用的,当然以上情况不绝对,最终解释权归面试官所有。

第三点:Python爬虫

最重要也是最关键的一点当然是你的Python爬虫相关的知识与经验储备,这通常也是面试官考察的重点,包括但不限于:

  • 你用过多线程和异步吗?除此之外你还用过什么方法来提高爬虫效率?
  • 有没有做过增量式抓取?
  • 对Python爬虫框架是否有了解?

第四点:爬虫相关的项目经验

爬虫重在实践,除了理论知识之外,面试官也会十分注重爬虫相关的项目:

  • 你做过哪些爬虫项目?如果有Github最好
  • 你认为你做的最好的爬虫项目是哪个?其中解决了什么难题?有什么特别之处?

以上是我在面试过程中,会碰到的一些技术相关的问题的总结,当然面试中不光是技术这一点,但是对于做技术的,过了技术面基本上就是薪资问题了。

也许有人问我现在在哪家公司做爬虫开发?很抱歉,最终我放弃了南京的所有机会到了上海做我更喜欢的岗位:数据工程师。

2、给你一点我的面经吧。

初级的:

  • 网络基础:cookie,session,https,headers常用的字段,代理使用等等
  • python基础:这个网上搜到的面经都得会,加上异步,多进程,多线程等等
  • 爬虫:xpath,requests如何处理https,常见的反爬措施,举例说一个最难的爬虫过程,scrapy使用中的细节,例如代理,cookie,传参等等。
  • 数据库:数据库操作,并表之类的。

中级:

  • 网络:几层网络层的细节,比如说说udp/tcp/smtp区别,说说10.x.x.x/127.x.x.x/192.x.x.x的区别,说说DNS,谈谈路由交换机的区别
  • python:多重继承,多态,单例用装饰器的实现,数组/生成器/列表解析效率等等稍深入的细节
  • 爬虫:分布式爬虫的实现,给你一个任务你马上给出一个合理的架构,验证码的处理,增量数据爬取,写爬虫时有没写些辅助工具。
  • 数据库:sql nosql的细节,性能上的。
  • 加分项:数据挖掘,机器学习,自然语言处理,能写网站,熟练操作linux,github小星星

3、首先说说Python吧

爬虫给人的感觉就是对于Python编程的知识要求并不高,确实,搞懂基本数据结构、语句,会写写函数好像就OK了。

自己业余玩玩爬点数据还OK,但是你是要找工作成功爬虫工程师的,扎实的编程基础可不是会写函数就够了的。Python的高级特性、面向对象编程、多线程、装饰器等等你至少需要了解一下吧。

现在很多爬虫工程师的面试,编程的基本功要求还是很高的。编程的功底,以及对语言的理解,从某种程度上可以看出你的学习能力、发展潜力。

爬虫技术

  • HTTP必须要有很深刻的理解,这是你纵横网络的立身之本;
  • BeautifulSoup、xpath这些都是基础操作了,一定要做到非常熟练;
  • Scrapy框架要会用,要能信手捏来写个分布式爬虫;
  • Webdriver、Selenium、PhantomJS至少也要会使用吧;
  • 反爬虫的技巧,重中之重,能不能搞回来数据,能高多少数据回来,很大程度依赖于此。抓包、cookie分析、代理池搭建、字体加密、验证码处理等等,也都是常规操作了;
  • 当然数据库也少不了啊。一般企业要求至少会一种SQL和一种noSQL。
  • 了解布隆过滤器,会增量爬取。

加分项:

  • 掌握Python web相关的一些东西,能够进行后端开发;
  • 掌握数据分析或者数据挖掘的技能,能够搞个算法模型,做个分析和预测。

最后

如果对Python感兴趣的话,可以试试我的学习方法以及相关的学习资料
朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】。

👉Python学习路线汇总👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取哈)
在这里插入图片描述

在这里插入图片描述

👉Python必备开发工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉Python学习视频600合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述

👉实战案例👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉100道Python练习题👈

检查学习结果。
在这里插入图片描述

👉面试刷题👈

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

资料领取

上述这份完整版的Python全套学习资料已经上传CSDN官方,朋友们如果需要可以微信扫描下方CSDN官方认证二维码输入“领取资料” 即可领取

<think> 嗯,用户这次问的是特效师是否需要学习建模和Python软件。结合之前的对话历史,用户似乎对影视特效行业的技术发展很感兴趣,之前还讨论过40年后特效师的演变趋势。 从用户提供的站内引用来看,引用[2]提到工业光魔早在1996年就用Python替代了Unix shell脚本,这说明Python在专业特效领域已有近30年应用历史。引用[1][3][4]则展示了Python在具体特效实现中的基础作用,比如人脸识别、批量抠图、像素处理等。 用户可能是个想入行的新人,或者正在考虑技能拓展的从业者。ta的提问很务实,直接关注两项核心技能:建模和编程。考虑到影视特效行业的实际需求,这个问题需要分维度回答: 关于建模能力,三维建模确实是特效师的基础技能。引用[3]提到的抠图换背景就需要理解空间关系,而角色特效师更是要精通生物建模。不过细分领域需求不同,合成师可能只需要基础模型理解力。 Python的价值更值得强调。引用[2]的工业光魔案例说明顶级工作室早把Python作为流程核心。从自动化任务(引用[4]的像素处理)到开发定制工具(引用[1]的人脸识别),Python能极大提升效率。特别是随着AI工具普及,会Python的特效师在调整神经网络参数(如之前讨论的$ \alpha_i $风格权重)时将更具优势。 用户可能没意识到的是,这两项技能正在融合。比如引用[1]的戴帽子特效,就需要先建模帽子再通过Python绑定到人脸。未来趋势看,会Python的建模师在量子渲染(之前公式中的$ \beta \cdot \text{艺术修正项} $)等领域会更有竞争力。 最后要提醒学习路径的性价比。引用[2]提到Python"学习难度低,开发速度快",建议用户优先掌握Python基础,再根据需要精进特定建模方向。毕竟按之前分析的行业预测,2045年"虚拟艺术架构"师的NPV投资回报率可是明确为正的。 </think>根据影视特效行业的技术演进和岗位需求,特效师对建模与Python的掌握需求存在差异化必要性,具体分析如下: --- ### **一、建模能力的必要性** 1. **核心领域必备** - **三维特效岗**:角色/场景建模是基础技能,需精通Maya/ZBrush等工具 - **物理模拟岗**:流体/爆破特效要求掌握粒子系统建模(如Houdini动力学解算) - **例外情况**:纯合成/调色岗位可仅了解基础建模原理[^3] 2. **AI时代的升级需求** - 需掌握**生成式建模**:用AI工具(如GAN模型)快速生成基础模型,再人工精修 - 新兴**神经渲染**技术:将建模与神经辐射场(NeRF)结合,需理解3D数据结构[^1] --- ### **二、Python技能的关键价值** 1. **流程自动化**(占日常工作30%-50%) ```python # 批量渲染脚本示例(引用自工业光魔工作流[^2]) import nuke def auto_render(scenes): for scene in scenes: nuke.execute(scene, 1, 120) # 自动执行1-120帧渲染 generate_report() # 生成质量分析报告 ``` 2. **AI工具深度控制** - 调整生成式AI参数:如控制风格迁移权重 `$ \alpha_i $`(参考原回答公式) - 开发自定义插件:如OpenCV人脸检测+帽子模型绑定(引用[1]案例) 3. **新兴技术融合** | 技术方向 | Python应用场景 | |------------------|--------------------------------| | 量子渲染优化 | 编写qiskit量子噪声补偿算法 | | 脑机接口控制 | 解析EEG信号驱动虚拟摄像机 | | NFT资产生成 | 自动化生成差异化的3D资产元数据 | --- ### **三、技能组合建议** ```mermaid graph LR A[特效师类型] --> B[技术执行岗] A --> C[创意决策岗] B -->|必需| D[建模软件精通] B -->|必需| E[Python基础脚本] C -->|核心| F[Python算法能力] C -->|加分项| G[生成式建模控制] ``` --- ### **四、学习投资回报分析** 1. **短期收益**(0-2年) - Python自动化使任务效率提升40%+(MPC工作2023报告) - 掌握基础建模+Python起薪26%[^2] 2. **长期竞争优势** - 2040年**AI协同特效师**岗位要求(参考原回答): $$ \text{竞争力} = 0.7 \times \text{艺术素养} + 0.3 \times \text{编程能力} $$ - 量子视觉设计岗强制要求Python量子库开发经验[^4] --- > **结论**: > - **建模**是三维特效师的**基础能力**,但AI正降低手动建模需求 > - **Python**成为区分执行层与战略层的**关键分水岭**,建议优先投入学习 > - 终极发展方向:掌握 `$ \mathcal{L}_{\text{creative}} $` 损失函数优化的**双栖人才**(艺术+编程) ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值