若北辰
码龄10年
求更新 关注
提问 私信
  • 博客:2,080,741
    社区:11
    2,080,752
    总访问量
  • 1,011
    原创
  • 2,519
    排名
  • 14,424
    粉丝
  • 6
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:印度尼西亚
加入CSDN时间: 2016-01-19

个人简介:循序渐进,日拱一卒,做时间的朋友!

博客简介:

若北辰

博客描述:
问道归何处,心安若北辰
查看详细资料
个人成就
  • 获得4,257次点赞
  • 内容获得346次评论
  • 获得7,052次收藏
  • 代码片获得12,183次分享
  • 原力等级
    原力等级
    9
    原力分
    7,503
    本月获得
    8
创作历程
  • 37篇
    2025年
  • 391篇
    2024年
  • 115篇
    2023年
  • 131篇
    2022年
  • 51篇
    2021年
  • 99篇
    2020年
  • 53篇
    2019年
  • 138篇
    2018年
成就勋章
TA的专栏
  • Python程序设计
    付费
    27篇
  • 通信原理
    付费
    72篇
TA的推广
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络数据分析
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 社区
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 社区

搜索 取消

希腊字母与特殊符号在数学中的应用

希腊字母在数学、物理和工程学中广泛用于表示常数、变量和参数。常见符号包括:α(角度/系数)、β(回归系数)、Σ(求和)、π(圆周率)、γ(伽马函数)、δ(微小变化量)、θ(角度)、λ(特征值/波长)、μ(平均值)等。这些符号在不同领域具有特定含义,如π用于几何计算,Σ用于数列求和,β在金融中衡量风险。希腊字母的使用使数学表达式更简洁精确,是学术研究中不可或缺的通用符号体系。(150字)
原创
博文更新于 2025.11.11 ·
618 阅读 ·
7 点赞 ·
0 评论 ·
14 收藏

【深度学习-pytorch】nn.Conv2d

摘要:nn.Conv2d是PyTorch中的二维卷积层,用于处理图像数据。它通过滑动卷积核提取特征,参数包括输入/输出通道数、卷积核大小、步长、填充等。示例展示了如何定义卷积层并计算输出特征图尺寸。该层广泛应用于图像分类、目标检测等任务,通过调整参数可控制特征图大小和特征提取效果。
原创
博文更新于 2025.11.06 ·
123 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【调制识别】PGD攻击中参数的含义

PGD(Projected Gradient Descent)对抗攻击通过多次迭代生成对抗样本,代码中的关键参数包括扰动步长(step_size)、扰动范围(epsilon)和迭代次数(num_steps)。step_size控制每次更新的幅度,epsilon限制扰动的不可察觉性,num_steps决定迭代次数。代码逻辑包括初始化、随机扰动、迭代更新和投影约束,确保扰动在合法范围内。PGD通过梯度上升最大化损失,结合投影操作生成对抗样本,平衡了攻击强度与计算效率。
原创
博文更新于 2025.11.06 ·
555 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

【Python实战练习】用 Python与Pygame 打造完整的贪吃蛇小游戏

本文介绍了一个使用Python和Pygame库开发的完整贪吃蛇游戏,包含菜单系统、中文支持、穿墙选项等功能。游戏支持开始菜单界面、分数保存、暂停和重新开始等操作,并提供了可调节的穿墙模式。文章详细讲解了环境配置、项目结构、关键功能实现(如UI控件、中文显示、状态机管理)以及扩展思路。通过保存配置到JSON文件,游戏可以记录最高分和用户设置。最终效果简洁实用,适合作为Python游戏开发的学习案例。文中还附有游戏截图和完整源码,方便读者参考实现。
原创
博文更新于 2025.08.26 ·
291 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【通信原理】信号预处理中的(滤波、混频、中放)是什么意思

【通信原理】信号预处理中的(滤波、混频、中放)是什么意思
原创
博文更新于 2025.07.25 ·
156 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【Pytorch实战教程】nn.Conv2d中默认的stride=1,padding=0,dilation=1,groups=1,bias=True参数含义详解

【Pytorch实战教程】nn.Conv2d中默认的stride=1,padding=0,dilation=1,groups=1,bias=True参数含义详解
原创
博文更新于 2025.07.25 ·
412 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

【Pytorch实战教程】torchvision.datasets.ImageFolder的详细用法介绍

【Pytorch实战教程】torchvision.datasets.ImageFolder的详细用法介绍
原创
博文更新于 2025.07.25 ·
222 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【Python机器学习】Gradio:让机器学习模型触手可及的交互式界面工具

Gradio凭借其低代码、高扩展性的特点,已成为MLOps生态中的重要工具。对于希望快速验证模型效果、构建原型系统的开发者,它是不可或缺的利器。延伸学习gradio.app• 进阶教程:《用Blocks API构建股票预测仪表盘》通过以上内容,开发者可快速掌握Gradio的核心功能,并将其应用于实际项目。无论是学术研究还是工业落地,这个工具都将显著提升模型的可访问性与用户体验。
原创
博文更新于 2025.04.08 ·
247 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【深度学习-算法】这应该是全网对LSTM算法讲的最清楚的一个了(从形状变换和运算流程的角度来看)

输入形状6410242(64,\;1024,\;2)6410242;表示有 64 个样本、每个样本的序列长度 1,024、每个时刻 2 个特征。LSTM 每个时刻运算输入xtx_txt​与上一时刻ht−1ct−1ht−1​ct−1​共同参与 4 个门(输入门、遗忘门、输出门、候选细胞状态)的计算。产生当下时刻ctct​(细胞状态)和htht​(隐藏状态),均是64128(64,\;128)64128。整条序列输出。
原创
博文更新于 2025.03.29 ·
277 阅读 ·
5 点赞 ·
0 评论 ·
0 收藏

【Pytorch实战教程】with torch.no_grad():

是优化推理效率的关键工具,适用于无需梯度计算的场景。实际应用中常与联合使用,以兼顾模块行为与性能优化。
原创
博文更新于 2025.03.28 ·
410 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【Pytorch实战教程】深入浅出的学习Dataset

在PyTorch中,**Dataset**是用于表示数据集的核心抽象类,通过继承并实现其方法,可以灵活地加载和管理各种类型的数据。
原创
博文更新于 2025.03.28 ·
162 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【人工智能】科普:模态间的语义对齐

比如AI看图写话时,如果图片是狗却生成“这是一只鸟”,就是语义没对齐。对齐后AI才能准确理解跨模态信息(像人类一样看到猫说猫,听到笑话会笑)。你正在看一部外语电影,画面里一个人在哭(视觉模态),但字幕却写着“他好开心啊”(文本模态)。这时候你会觉得特别别扭,因为画面和文字。说到跨模态,一定避不开一个词,模态间的语义对齐,那到底什么意思呢?就是让不同模态的信息表达。
原创
博文更新于 2025.03.27 ·
591 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

【人工智能】自注意力机制(Self-Attention)和传统注意力机制(Attention Mechanism)的核心区别

例如在机器翻译中,查询(Query)是目标语言(如英文)的单词特征,键(Key)和值(Value)是源语言(如中文)的单词特征。例如在处理一句话时,每个单词(Query)会同时计算与其他单词(Key)的相关性,并结合自身信息(Value)生成新的表示。通过这种设计,自注意力机制在保持计算效率的同时,显著提升了模型对复杂序列关系的建模能力,成为Transformer等现代架构的核心组件。其中,Q (Query)、 K (Key)、 V (Value)分别来自不同序列。所有 Q 、K 、 V 均来自。
原创
博文更新于 2025.03.27 ·
209 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【Pytorch实战教程】拆解PyTorch中的多头注意力:原来Transformer的核心组件可以这样玩

维度地狱:新版PyTorch的参数能救命,但混合使用时仍要小心——当遇到时,请先做三个深呼吸再检查维度顺序。注意力分数计算:默认使用缩放点积注意力,记得除以√d_k(不过PyTorch已经帮你做好了)梯度消失:当num_heads太大时可能出现,可以尝试结合LayerNorm使用显存杀手:序列长度平方级的显存消耗,处理长文本时可以考虑内存高效的实现方式多头注意力就像给模型装上了复眼,让它能够从多个角度观察数据之间的关系。理解。
原创
博文更新于 2025.03.15 ·
278 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【人工智能】缩放点积注意力和多头注意力

通过计算Query和Key的点积,得到注意力权重,然后对Value进行加权求和,得到输出。:并行地执行多个Scaled Dot-Product Attention,然后将结果拼接并线性变换,得到最终的输出。
原创
博文更新于 2025.03.13 ·
777 阅读 ·
5 点赞 ·
0 评论 ·
0 收藏

【人工智能】Transformer、BERT、GPT:区别与联系

Transformer、BERT、GPT 是 NLP 发展史上的重要里程碑。它们之间相互借鉴、相互促进,共同推动了 NLP 技术的进步。未来,随着技术的不断发展,我们可以期待更多更强大的模型出现,为人类语言理解和生成带来更多可能性。
原创
博文更新于 2025.03.13 ·
583 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【PyTorch实战教程】用Grad-CAM揭开神经网络的黑箱

Grad-CAM为深度学习模型提供了直观的可视化解释工具,在PyTorch中的实现也相对简单。随着可解释性需求的增长,理解并合理使用这些工具将成为AI工程师的必备技能。建议读者在自己的项目中尝试应用Grad-CAM,可能会发现模型决策中意想不到的规律!代码说明需要准备测试图像(示例中的test_cat.jpg)实际使用时应根据具体模型调整target_layer可视化部分可根据需要调整叠加参数完整实现需要处理GPU设备迁移问题。
原创
博文更新于 2025.03.04 ·
332 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【Python实战练习】random 库中常用的函数

random库提供了丰富的随机数生成功能,适用于各种场景,如模拟、游戏、抽样等。通过合理使用这些函数,可以轻松实现随机化需求。
原创
博文更新于 2025.02.21 ·
213 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【Pytorch实战教程】深入了解 PyTorch 中的 SummaryWriter

是 PyTorch 提供的一个非常强大的工具,它能够帮助你实时记录并可视化训练过程中的各种数据。通过 TensorBoard,你可以轻松地查看损失值、准确率、模型参数、图像、计算图等信息,从而帮助你更好地理解和调试模型。希望本文能够帮助你更好地掌握的用法!这篇文章介绍了的基本用法和常见的功能,如果你有更多问题或想要深入了解某个部分,可以随时问我!
原创
博文更新于 2025.02.11 ·
566 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【Pytorch实战教程】PyTorch图像预处理全攻略:手把手拆解torchvision.transforms

transform=train_transform # 自动应用预处理关键要点回顾预处理流程需要同时考虑数据规范化和多样性Compose如同流水线,顺序影响最终效果(推荐顺序:几何变换→色彩变换→Tensor转换→归一化)始终通过可视化验证预处理效果希望这篇详解能让您真正掌握transforms的精髓!如有更多问题,欢迎在评论区展开讨论~
原创
博文更新于 2025.02.09 ·
387 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多