AI小模型
码龄5年
求更新 关注
提问 私信
  • 博客:855,535
    社区:1,155
    动态:824
    视频:120
    857,634
    总访问量
  • 492
    原创
  • 6,855
    粉丝
  • 43
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
加入CSDN时间: 2021-03-28

个人简介:前百创作者、渗透测试专家、闷骚男一位、有自己的摇滚乐队

博客简介:

MachineGunJoe666

博客描述:
李志宽、前百创作者、渗透测试专家、闷骚男一位、有自己的摇滚乐队
查看详细资料
个人成就
  • 获得3,097次点赞
  • 内容获得768次评论
  • 获得7,841次收藏
  • 代码片获得5,252次分享
  • 博客总排名18,409名
  • 原力等级
    原力等级
    7
    原力分
    4,889
    本月获得
    4
创作历程
  • 63篇
    2025年
  • 74篇
    2024年
  • 113篇
    2023年
  • 24篇
    2022年
  • 237篇
    2021年
成就勋章
TA的专栏
  • AI大模型
    11篇
  • AI大模型入门指南
    7篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 6

TA参与的活动 8

TA的推广
兴趣领域 设置
  • Python
    python
  • Java
    java
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

39人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

AI代理的记忆机制:向量数据库如何支撑大语言模型记忆

矢量存储是一种特殊的数据库类型,与传统数据库存储文本或数字不同,它专门用于保存矢量数据。矢量是一组数字列表,能够表达文本的语义信息。它通过一种叫做嵌入的过程生成这些矢量。当模型接收一个句子时,会将其转化为高维空间中的一个点。在这个空间里,含义相近的文本会被聚集在一起。例如,在向量空间中,"我喜欢寿司"可能会与"寿司是我的最爱食物"接近。这些嵌入能够帮助AI代理找到相关的想法,即使词语有所不同。
原创
博文更新于 2025.07.28 ·
953 阅读 ·
13 点赞 ·
0 评论 ·
18 收藏

基于DeepSeek+Dify的RAG知识库全栈实战指南

模型选型:DeepSeek-R1 1.5B在精度与效率的平衡架构设计:Ollama+Dify的轻量级容器化方案检索优化:混合检索策略(BM25+向量)提升召回率。
原创
博文更新于 2025.06.16 ·
627 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

大模型双引擎解析:Chat与Embedding模型核心技术全景

摘要:本文系统分析了Chat对话模型和Embedding嵌入模型的技术特性与协同应用。Chat模型(如GPT-4)擅长多轮交互与内容生成,而Embedding模型(如BAAI/bge)专注于语义向量化与相似度计算。二者在RAG(检索增强生成)流程中分工明确:Embedding负责文档索引构建,Chat模型进行结果重排与生成优化。工业应用显示,该方案在客服系统中可将问题解决率提升至91%,知识库搜索准确率达89%。未来技术将向多模态Embedding和动态量化方向发展,开发者需掌握从基础编码到系统部署的全栈能
原创
博文更新于 2025.06.15 ·
616 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

RAG商业落地实战指南:破解企业级应用的五大深水区

企业级RAG落地的关键挑战与解决方案:1)数据安全需全链路加密和细粒度权限控制;2)文件处理需支持多格式解析和大文件分块;3)通过分层检索和滑动窗口技术突破上下文限制;4)采用混合部署和模型量化实现成本优化。最终需在安全、性能和成本间建立平衡,满足合规要求。核心指标包括支持10+文件格式、128k tokens上下文窗口、单文档处理成本<0.01美元等。
原创
博文更新于 2025.06.13 ·
307 阅读 ·
4 点赞 ·
0 评论 ·
3 收藏

Prompt工程完全制霸手册:从角色定义到工业级模板,揭秘大模型操控的「底层逻辑」

Prompt(提示词)是大模型理解任务的“编程语言”,是人与AI交互的核心接口。与传统编程不同,Prompt通过自然语言指令控制模型行为,其本质是语义特征提取器——将用户意图转化为模型可解析的隐空间向量。案例对比模糊指令“写一篇关于气候变化的文章”→ 输出内容宽泛,缺乏深度工程化Prompt“你是一名联合国环境署专家,用Markdown格式撰写报告,需包含:1) 近5年北极冰盖面积变化数据(引用IPCC报告)2) 对发展中国家的影响分析3) 三个可落地的解决方案。
原创
博文更新于 2025.06.12 ·
962 阅读 ·
24 点赞 ·
0 评论 ·
25 收藏

一文读懂模型上下文协议(MCP):AI与世界的「万能接口」设计指南

技术价值开发效率提升:传统集成需1周的任务,MCP可缩短至数小时安全可控:企业可自主管理数据权限,避免敏感信息暴露生态共建:开源社区涌现MCP服务器市场(如mcpt、OpenTools),加速工具共享未来趋势多模态扩展:支持AR眼镜、脑机接口等新型设备接入端侧部署:DeepSeek-R1-Zero等轻量模型推动MCP在移动端落地。
原创
博文更新于 2025.06.09 ·
1086 阅读 ·
17 点赞 ·
0 评论 ·
19 收藏

大模型简史:从Transformer(2017)到DeepSeek-R1(2025)

语言模型(Language Models, LMs)是预测序列数据(如文本)概率分布的数学模型。其核心任务是给定前文预测下一个词的概率。1.1 大型语言模型(LLMs)LLMs是参数量超过亿级的语言模型,通过海量数据预训练获得通用语言理解能力。例如,GPT-3(1750亿参数)能够生成连贯文本、翻译语言甚至编写代码。1.2 自回归语言模型自回归模型(如GPT系列)通过从左到右逐个生成词来构建文本,其核心公式为:这种生成方式使其在文本生成任务中表现卓越。1.3 生成能力。
原创
博文更新于 2025.06.06 ·
839 阅读 ·
9 点赞 ·
0 评论 ·
27 收藏

大模型微调实战指南:从理论到实践

模型微调(Fine-tuning)技术摘要 模型微调指基于预训练大模型(如GPT、BERT)在特定领域数据上的二次训练,保留通用能力的同时提升专业性能。核心方式包括: 全量微调:更新所有参数,适合大数据场景; 部分微调(冻结/渐进解冻):平衡效率与效果; 参数高效微调(PEFT,如LoRA):低资源适配。主流框架包括HuggingFace Transformers、DeepSpeed和PEFT库,选择依据数据规模。 关键实践:数据质量>数量(如医疗领域需病例文献)、学习率2e-5等超参优化、评估需兼顾通用与
原创
博文更新于 2025.06.06 ·
753 阅读 ·
18 点赞 ·
0 评论 ·
13 收藏

Windows用户福音 | 全网最全MCP实战指南(附资源导航+避坑手册)

MCP(ModelContextProtocol)作为连接AI模型与开发环境的协议框架,正随智能体技术发展受关注。文章提供Windows系统安装指南:推荐Cursor内置方案或VSCode插件扩展,并给出环境准备要点。针对MCP生态混乱问题,梳理了官方及第三方优质资源渠道,包括GitHub核心库和中文友好平台。通过Python自动化报表和前端智能补全两个场景展示MCP的实战应用,最后给出Windows特有问题解决方案。全文旨在帮助开发者快速掌握MCP技术,提升开发效率。
原创
博文更新于 2025.06.05 ·
1483 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

跨模态大模型开发实战:从原理到企业级应用全流程指南

本文系统阐述了多模态AI技术的核心架构与应用实践。首先解析了跨模态基础架构,包括编码塔、融合层和解码器三大组件,以及基于对比学习的预训练范式。其次详细介绍了图文描述模型BLIP-2和文生视频模型AnimateDiff的本地化部署方案,涵盖模型量化、GPU加速等优化技巧。在应用层面,重点展示了视觉问答、情感计算等典型任务的实现方法,以及医疗领域DICOM影像分析和多模态病历处理的专项突破。最后给出了企业级优化方案,包括混合精度训练和多卡推理加速技术,并以工业质检和智能座舱为例,展示了多模态技术的落地场景。全文
原创
博文更新于 2025.06.05 ·
480 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

AI大模型智能体开发实战:从原理到企业级应用全解析

文章摘要:本文系统解析了智能体开发技术,涵盖理论基础与实践应用。首先剖析Agent智能体三要素(感知-决策-执行)和强化学习原理,对比ReAct等主流框架。其次详细讲解Dify平台在Agent生命周期管理和快速开发中的应用,包括数据处理、模型训练等全流程配置。然后深入LangGraph框架的分布式架构设计,展示多Agent协同工作流构建方法。实战部分呈现智能客服和金融风控两大场景,涉及混合检索增强、记忆架构等优化策略。最后探讨混合检索、记忆增强等进阶技术,为复杂业务场景提供解决方案。全文贯穿代码示例和技术要
原创
博文更新于 2025.06.04 ·
1213 阅读 ·
18 点赞 ·
0 评论 ·
14 收藏

AI大模型开发实战:RAG工程化与LLMOps全流程解析

摘要:RAG(检索增强生成)技术通过结合外部知识检索与生成模型提升大模型的专业准确性。其核心包括知识加载、分块处理、向量化存储、语义检索和生成增强五大模块。Self-RAG创新引入反思标记实现动态检索控制。Embedding模型通过向量空间捕捉语义关联,并可通过微调适配垂直领域。LlamaIndex框架提供完整的RAG解决方案,支持多模态和知识图谱增强。Dify平台实现从数据标注到监控的全生命周期管理。RAG优化策略包括分级缓存、模型量化和异步处理等,有效解决大模型在专业场景的应用问题。
原创
博文更新于 2025.06.04 ·
1391 阅读 ·
37 点赞 ·
0 评论 ·
20 收藏

无敌!浅谈Agent的五重境界

摘要: Agent发展经历了从工具型到通用智能的五重境界。早期工具型Agent(如AutoGPT)依赖预设流程,灵活性低;认知型Agent(如ReAct)提升了推理能力;环境交互Agent(如BrowserGPT)结合多模态实现网页操作;自主Agent(如Devin)支持复杂规划;终极形态端到端通用Agent(如OpenAI DeepResearch)将内化所有能力,动态完成目标。2025年趋势是减少人工框架设计,强化模型原生智能(动态规划、记忆压缩、实时反思),关键技术包括长上下文管理、RAG检索、因果推
原创
博文更新于 2025.06.03 ·
745 阅读 ·
24 点赞 ·
0 评论 ·
8 收藏

大模型Prompt工程实战教程:从设计原则到行业应用

《Prompt工程实践指南》摘要:本文系统介绍了Prompt设计三大核心原则(清晰性、上下文控制和角色设定),通过代码示例演示了如何优化AI模型输出。文章详细解析了Prompt优化的三大技巧:迭代测试、Few-shot学习和思维链应用,并以智能客服系统为案例展示综合实现。关键实践建议包括:结构化Prompt设计、3-5个示例的最佳数量、不同场景的温度参数设置(创造性0.7-1.0,严谨回答0.2-0.5),以及上下文窗口的平衡管理。本指南为开发者提供了可落地的Prompt工程方法论。
原创
博文更新于 2025.05.30 ·
392 阅读 ·
7 点赞 ·
0 评论 ·
4 收藏

3分钟读懂RAGFlow:从 0 到 1教你搭建RAG知识库

RAGFlow是一款基于检索增强生成技术的开源知识库解决方案,可将PDF、Word等文档快速转化为可检索知识库,实现精准问答。其核心功能包括智能解析复杂格式文档、混合检索提升相关性以及可视化全流程操作。系统采用Docker一键部署,支持本地和API两种模型接入方式。使用流程包括账号注册、模型配置、知识库创建(可批量上传文档)及效果验证。实践表明,文件解析精度、Embedding质量和LLM性能是提升RAG系统准确率的三大关键点,直接影响最终问答效果。该系统特别适合处理多格式非结构化文档的知识管理场景。
原创
博文更新于 2025.05.30 ·
577 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

用代码和故事看懂AI大模型:从原理到实践全攻略

《厨房里的AI烹饪课:大模型实践入门指南》通过烹饪比喻生动讲解AI大模型原理:数据如菜谱、训练如学厨、调参如控火。文章提供Python实践路径,从5行代码快速体验文本生成,到Transformer核心代码解析,再到训练自定义模型。包含环境配置、注意力机制可视化、调试技巧和项目升级路线,并附智能菜谱生成器完整示例。该指南将复杂的大模型技术转化为可操作的代码实践,帮助开发者像学做菜一样掌握AI模型开发,从原理理解到实际应用形成完整学习闭环。(149字)
原创
博文更新于 2025.05.29 ·
386 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

大模型高效微调与部署优化技术实战指南

掌握“微调-压缩-部署”全链路技术,是构建企业级大模型应用的核心竞争力。建议从垂直场景切入,通过工具链组合实现最佳性价比。
原创
博文更新于 2025.05.29 ·
496 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

大模型开发工具链全景指南:从框架选型到生产部署

掌握工具链的本质是理解不同阶段的技术需求。建议在真实项目中实践工具组合(如LangChain+PyTorch+ONNX),逐步构建标准化开发流程。
原创
博文更新于 2025.05.28 ·
883 阅读 ·
24 点赞 ·
0 评论 ·
16 收藏

Transformer到MoE:聚客AI大模型核心技术栈完全指南

本文系统解析了大模型技术栈,涵盖Transformer架构原理、训练部署全流程及前沿发展方向。核心内容包括:1)自注意力机制与位置编码实现;2)分布式训练与LoRA微调实战;3)ONNX推理优化与微服务架构设计;4)MoE、量子化注意力等前沿技术。强调理论实践结合,建议从单点突破到系统构建,并配套提供书籍、视频、项目源码及面试题库等学习资源,助力实现技术闭环与应用落地。
原创
博文更新于 2025.05.28 ·
581 阅读 ·
25 点赞 ·
0 评论 ·
17 收藏

大模型应用开发实战:RAG驱动的智能体开发全解析

RAG(检索增强生成)技术通过结合外部知识库与大模型,有效解决传统智能体在知识时效性、领域专业性和可信度验证方面的局限。其工业级开发采用四步法:知识库构建、多模态检索设计、上下文增强和闭环验证。金融风控智能体案例展示了从多源数据加载到可视化报告生成的全流程实现。针对性能优化提出分层索引、向量压缩等六大策略。未来RAG将向动态知识图谱、多模态检索等方向发展。学习路径包括理论书籍、视频教程、项目实战和面试准备,形成完整的学习闭环。
原创
博文更新于 2025.05.27 ·
1036 阅读 ·
17 点赞 ·
0 评论 ·
11 收藏
加载更多