M_Z_G_Y
码龄10年
求更新 关注
提问 私信
  • 博客:285,289
    社区:3
    285,292
    总访问量
  • 57
    原创
  • 83
    粉丝
  • 7
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:贵州省
加入CSDN时间: 2015-09-28
博客简介:

M_Z_G_Y的博客

查看详细资料
个人成就
  • 获得173次点赞
  • 内容获得26次评论
  • 获得712次收藏
  • 代码片获得190次分享
  • 博客总排名2,059,487名
创作历程
  • 1篇
    2022年
  • 36篇
    2019年
  • 80篇
    2018年
  • 3篇
    2015年
成就勋章
TA的专栏
  • AI编译论文
  • 机器学习/深度学习
    26篇
  • 目标检测
    4篇
  • TensorFlow
    25篇
  • 图像处理
    10篇
  • 数学
    6篇
  • Python
    14篇
  • Linux
    2篇
  • web服务器
    2篇
  • 数据库
    1篇
  • caffe
    2篇
  • 工具
    3篇
  • ElasticSearch
    2篇
  • Postman
    1篇
  • CV论文
    4篇
  • Pytorch
    4篇
  • C++
    12篇
  • 超分辨率重建
    1篇
  • 算法
    2篇

TA关注的专栏 2

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

兴趣领域 设置
  • 数据结构与算法
    排序算法推荐算法
  • 人工智能
    opencvcaffetensorflowmxnetpytorchnlpscikit-learn聚类集成学习迁移学习分类回归
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

32人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

Linux翻译工具

Linux翻译工具
原创
博文更新于 2022.12.05 ·
1203 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

AlexNet网络的参数权值

发布资源 2018.08.04 ·
rar

图像处理入门:取样和量化

       获取图像的目标是从感知的数据中产生数字图像,但是传感器的输出是连续的电压波形,因此需要把连续的感知数据转换为数字形式。这一过程由图像的取样与量化来完成。数字化坐标值称为取样;数字化幅度值称为量化。图像采样   ◆  在取样时,若横向的像素数(列数)为M ,纵向的像素数(行数)为N,则图像总像素数为M*N个像素。   ◆   一般来说,采样间隔越大,所得图像像素数越少,空间...
转载
博文更新于 2018.11.13 ·
5340 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

表情识别入门:ECCV2016《Peak-Piloted Deep Network for Facial Expression Recognition》

研究背景1. 大多数FER(Facial Expression Recognition)方法在学习期间独立地考虑每个样本,忽略每对样本之间的内在相关,这限制了模型的辨别能力。2. 大多数FER方法专注于识别明显可区分的peak expressions ,并忽略最常见的non-peak expression样本。下图展示了从non-peak expression到peak exp...
原创
博文更新于 2019.06.06 ·
2436 阅读 ·
0 点赞 ·
5 评论 ·
5 收藏

Pytorch入门:visdom启动出错

启动visdom:python -m visdom.server问题描述:Downloading scripts. It might take a while.ERROR:root:Error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:719) while downloading http...
原创
博文更新于 2019.01.18 ·
7831 阅读 ·
7 点赞 ·
2 评论 ·
12 收藏

图像处理入门:几何变换

    图像的几何变换主要包括:平移、扩大与缩小、旋转、仿射、透视等等。在OpenCV中,cv2.resize()实现扩大或者缩小,cv2.warpAffine()实现平移、旋转(cv2.getRotationMatrix2D(旋转中心,旋转角度,旋转后的缩放因子)函数作为变换矩阵)和仿射变换(cv2.getAffineTransform(变换前的3个点,变换后的3个点)函数用来创建2*3的变换矩...
原创
博文更新于 2018.11.13 ·
772 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

数学:深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值;如果含有不等式约束,可以应用KKT条件去求取。当然,这两个方法求得的结果只是必要条件,只有当是凸函数的情况下,才能保证是充分必要条件。KKT条件是拉格朗日乘子法的泛化。之前学习的时候,只知道直接应用两个方法,但是却...
转载
博文更新于 2019.04.16 ·
827 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

faster rcnn(TFFRCNN)使用的参数权值和模型

发布资源 2018.08.04 ·
txt

机器学习/深度学习入门:基本问题

过拟合,欠拟合和相应的解决办法欠拟合:模型没有很好地捕捉到数据特征,不能够很好地拟合数据.解决办法:模型复杂化 增加更多的特征,使输入数据具有更强的表达能力 降低正则化约束过拟合:模型把训练集数据学习的太彻底,在验证和测试集上准确率低,即模型的泛化能力差。解决办法:增加训练数据数 减少特征数 降低模型的复杂度 使用正则化约束 使用Dropout 提前结束训练(全局平均池...
原创
博文更新于 2019.11.21 ·
700 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习/深度学习入门:标准化

数据归一化(概率模型不需要)目的:就是将数据的所有特征都映射到同一尺度上,这样可以避免由于量纲的不同使数据的某些特征形成主导作用。优点:加快了梯度下降求最优解的速度(椭圆、圆);有可能提高精度(原始数据可能突出数值较高的指标在综合分析中的作用,相对削弱数值水平较低指标的作用)方法:最大最小标准化(图像)、z-score标准化(数据分布近似高斯分布)、非线性归一化(数据分化比较大)如lo...
原创
博文更新于 2019.11.21 ·
836 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

目标检测入门:CVPR2014《R-CNN:Rich feature hierarchies for accurate object detection and semantic segmentat》

研究背景速度:经典的目标检测算法使用滑动窗法依次判断所有可能的区域。本文则预先提取一系列较可能是物体的候选区域,之后仅在这些候选区域上提取特征,进行判断。训练集:经典的目标检测算法在区域中提取人工设定的特征(Haar,HOG)。本文则需要训练深度网络进行特征提取。可供使用的有两个数据库:一个较大的识别库(ImageNet ILSVC 2012):标定每张图片中物体的类别。一千...
转载
博文更新于 2019.11.18 ·
675 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

目标检测入门:候选区域选择

滑动窗口 滑动窗口检测器是一种暴力检测方法,从左到右,从上到下滑动窗口,然后利用分类识别目标。这里使用不同大小的窗口,因为一张图片可能展示从不同距离观测检测出不同的目标类型 滑动窗口目标检测算法也有很明显的缺点,就是计算成本,因为你在图片中剪切出太多小方块,卷积网络要一个个地处理。如果你选用的步幅很大,显然会减少输入卷积网络的窗口个数,但是粗糙间隔尺寸可能会影响性能...
原创
博文更新于 2019.09.10 ·
10391 阅读 ·
7 点赞 ·
1 评论 ·
42 收藏

C++入门:std::

引例:#include<iostream>int main(){ std::cout<<"我喜欢C++";//输出一句话 std::cout<<std::endl;//换行 return 0;}std是什么? std:: 是个名称空间标示符,C++标准库中的函数或者对象都是在命名空间std中定义的...
转载
博文更新于 2019.07.11 ·
588 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

算法入门:树的遍历

二叉树的遍历主要有前序遍历,中序遍历,后序遍历,层序遍历四种方式前序遍历:中左右 中序遍历:左中右 后序遍历:左右中递归#include<iostream>#include<queue>#include<vector>#include<stack>using namespace std;struct TreeNode { ...
原创
博文更新于 2019.07.08 ·
286 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

C++入门:结构体

结构体声明//没有标明其标签,声明了结构体变量s1struct{ int a,b; char c; double d; int add() {return a+b;}} s1;//s1.a=1;//结构体的标签被命名为SIMPLE,用SIMPLE标签的结构体,另外声明了变量t1, t2[20], *t3struct SIMPLE{ in...
转载
博文更新于 2019.07.08 ·
445 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

C++入门:STL——queue、priority_queue、deque、stack

一、queuequeue(队列)是一种先进先出的数据结构,也就是FIFO(firstin first out) ,最先加入队列的元素将最先被取出来。二、queue的常用函数q.push(元素):将元素添加到队尾 q.pop():删除队顶元素,类型为void,但并不返回被删除的元素 q.size():返回队列中的元素数量 q.empty():判断队列是否为空,返回true或fal...
转载
博文更新于 2019.07.04 ·
409 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

机器学习/深度学习入门:Boosting、Bagging和偏差、方差

1、化简公式2. bagging的偏差和方差对于bagging来说,每个基模型的权重等于1/m且期望近似相等(子训练集都是从原训练集中进行子抽样),故我们可以进一步化简得到:根据上式我们可以看到,整体模型的期望近似于基模型的期望,这也就意味着整体模型的偏差和基模型的偏差近似。同时,整体模型的方差小于等于基模型的方差(当相关性为1时取等号),随着基模型数(m)的增多,整体模型的方...
转载
博文更新于 2019.07.03 ·
933 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

C++入门:STL——map

关联式容器:每个元素位置取决于特定的排序准则以及元素值,和插入次序无关。一、mapmap提供一对一(其中第一个称为关键字key,每个关键字只能在map中出现一次,第二个称为该关键字的值value)的数据处理能力,由于这个特性,它完成有可能在我们处理一对一数据的时候,在编程上提供快速通道。map内部自建一颗红黑树(一种非严格意义上的平衡二叉树),这颗树具有对数据自动排序的功能,所以在map...
转载
博文更新于 2019.06.28 ·
1132 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

算法入门:优先队列实现——堆

定义优先队列(PriorityQueue),根据key值的大小将元素进行排序、先被pop的通常是优先级最高的。此处介绍基于堆实现的优先队列,binary heap是一种完全二叉树,以大堆为例,每棵树的根节点的key值一定大于其子孙节点的key值,完全二叉树除了最底层的叶子节点外,其他位置都是填满的。这样我们可以利用数组来存储所有节点。若将数组从下标1开始存储元素、那么下标为 i 的节点...
转载
博文更新于 2019.06.28 ·
337 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

C++入门:STL——set

关联式容器:每个元素位置取决于特定的排序准则以及元素值,和插入次序无关。一、setset(集合)由红黑树(平衡二叉树的一种)实现,其内部所有元素都会根据元素的键值自动排序,set的元素不像map那样可以同时拥有实值(value)和键值(key),set元素的键值就是实值,实值就是键值。set内每个元素值只能出现一次,不允许重复。二、set的常用函数s.insert()--在集合中插...
转载
博文更新于 2019.06.27 ·
315 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多