二十六、进阶主题与未来发展
模型优化技术知识蒸馏:通过教师-学生框架实现模型压缩模型剪枝:结构化剪枝和迭代剪枝技术权重量化:动态量化、静态量化和量化感知训练低秩分解:SVD分解和Tucker分解技术大语言模型专题缩放定律:模型性能与规模的关系分析指令微调与对齐:RLHF、DPO等对齐技术推理能力增强:思维链、自洽性推理、工具使用多模态扩展:视觉-语言模型的结合关键技术进展从模型压缩到推理优化的完整技术栈从单一模态到多模态理解的扩展从被动生成到主动推理的能力提升从通用模型到专业化对齐的演进。
深度学习系列教程
SpringCloud(Kilburn 2022)系列教程
Spring Cloud(Finchley版本)系列教程
手把手教你玩转docker系列教程
硬件
PVE系列教程
nas
群晖
群晖docker、container manager系列教程
云原生
K8S
VuePress搭建博客教程
LeeCode算法题Java实现
MySQL高级进阶
数据结构与算法
Java语言基础
spring boot + vue + iView
PAT乙级
PAT甲级
Java基础
Linux
Python
Spring
Hibernate
Mybatis
Struts2
设计模式
SpringMVC
Java多线程
SSH框架
大数据
Machine Learning
SSM框架
哈工大考研
JavaWeb
MySQL
感悟人生
paper
计算机网络
深度学习
tools
blog
oracle
spring boot
redis
java并发
BP神经网络 TA关注的专栏 6
TA关注的收藏夹 0
TA关注的社区 4
TA参与的活动 2

AI 镜像开发实战征文活动
随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨


最近
文章
专栏
代码仓
资源
收藏
关注/订阅/互动
社区
帖子
问答
课程
视频
