勤奋的凯尔森同学
码龄8年
求更新 关注
提问 私信
  • 博客:1,434,060
    社区:1
    动态:2,093
    1,436,154
    总访问量
  • 643
    原创
  • 4,457
    排名
  • 20,178
    粉丝
  • 13
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
加入CSDN时间: 2017-12-20
博客简介:

JingLisen的博客

查看详细资料
个人成就
  • 获得2,703次点赞
  • 内容获得226次评论
  • 获得3,004次收藏
  • 代码片获得5,564次分享
  • 原力等级
    原力等级
    7
    原力分
    4,689
    本月获得
    12
创作历程
  • 130篇
    2025年
  • 54篇
    2024年
  • 24篇
    2023年
  • 72篇
    2022年
  • 91篇
    2021年
  • 11篇
    2020年
  • 21篇
    2019年
  • 227篇
    2018年
  • 13篇
    2017年
成就勋章
TA的专栏
  • 深度学习系列教程
    付费
    26篇
  • SpringCloud(Kilburn 2022)系列教程
    付费
    6篇
  • Spring Cloud(Finchley版本)系列教程
    付费
    5篇
  • 手把手教你玩转docker系列教程
    付费
    7篇
  • 硬件
    95篇
  • PVE系列教程
    20篇
  • nas
    38篇
  • 群晖
    30篇
  • 群晖docker、container manager系列教程
    25篇
  • 云原生
    1篇
  • K8S
    1篇
  • VuePress搭建博客教程
    6篇
  • LeeCode算法题Java实现
    6篇
  • MySQL高级进阶
    9篇
  • 数据结构与算法
    3篇
  • Java语言基础
    54篇
  • spring boot + vue + iView
    9篇
  • PAT乙级
    73篇
  • PAT甲级
  • Java基础
    77篇
  • Linux
    31篇
  • Python
    1篇
  • Spring
    5篇
  • Hibernate
    2篇
  • Mybatis
    1篇
  • Struts2
    2篇
  • 设计模式
    30篇
  • SpringMVC
    1篇
  • Java多线程
    12篇
  • SSH框架
    2篇
  • 大数据
  • Machine Learning
    1篇
  • SSM框架
    1篇
  • 哈工大考研
    1篇
  • JavaWeb
    10篇
  • MySQL
    16篇
  • 感悟人生
    21篇
  • paper
    1篇
  • 计算机网络
    7篇
  • 深度学习
    2篇
  • tools
    11篇
  • blog
    4篇
  • oracle
    1篇
  • spring boot
    1篇
  • redis
    2篇
  • java并发
    10篇
  • BP神经网络
    1篇

TA关注的专栏 6

TA关注的收藏夹 0

TA关注的社区 4

TA参与的活动 2

兴趣领域 设置
  • 大数据
    mysqlredis
  • 后端
    spring架构
  • 人工智能
    机器学习深度学习神经网络tensorflownlp
  • 搜索
    elasticsearch
  • 服务器
    linux
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

二十六、进阶主题与未来发展

模型优化技术知识蒸馏:通过教师-学生框架实现模型压缩模型剪枝:结构化剪枝和迭代剪枝技术权重量化:动态量化、静态量化和量化感知训练低秩分解:SVD分解和Tucker分解技术大语言模型专题缩放定律:模型性能与规模的关系分析指令微调与对齐:RLHF、DPO等对齐技术推理能力增强:思维链、自洽性推理、工具使用多模态扩展:视觉-语言模型的结合关键技术进展从模型压缩到推理优化的完整技术栈从单一模态到多模态理解的扩展从被动生成到主动推理的能力提升从通用模型到专业化对齐的演进。
原创
博文更新于 2025.11.26 ·
35 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

二十五、实践项目与案例分析

文本分类实战情感分析项目的完整实现新闻分类系统的构建模型部署和API服务命名实体识别系统BiLSTM-CRF模型的实现实体关系联合抽取知识图谱构建和应用智能问答系统检索式问答系统生成式问答系统多轮对话管理和状态跟踪关键技术点使用BERT等预训练模型进行迁移学习处理序列标注任务的CRF层多任务学习和联合抽取对话状态管理和上下文理解实践建议根据任务需求选择合适的模型架构注意数据预处理和特征工程合理设计评估指标和监控系统考虑模型部署和服务的实际需求。
原创
博文更新于 2025.11.18 ·
51 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

二十四、预训练语言模型

本文系统介绍了预训练语言模型的关键技术,重点分析了BERT等模型的预训练任务设计。主要内容包括:1)迁移学习在NLP中的发展历程,从静态词向量到Transformer架构的演进;2)预训练任务设计,详细解析了掩码语言模型(MLM)、对比学习等核心技术原理;3)多任务学习框架的实现方式,展示了如何结合不同预训练任务。文章通过数学公式和Python代码示例(如MLM掩码创建过程)直观呈现了技术细节,为理解现代预训练语言模型提供了系统视角。
原创
博文更新于 2025.11.18 ·
40 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

二十三、Transformer架构详解

Transformer架构于2017年由Vaswani等人在《Attention Is All You Need》论文中提出,彻底改变了序列建模的范式。其核心创新在于:完全基于注意力机制:摒弃了传统的循环和卷积结构,仅使用自注意力机制和前馈神经网络。并行计算优势:与RNN的顺序处理不同,Transformer可以并行处理整个序列,大幅提升训练效率。长程依赖建模:自注意力机制能够直接捕捉序列中任意两个位置之间的依赖关系。Transformer采用编码器-解码器架构,但其内部结构与传统的RNN-based Se
原创
博文更新于 2025.11.16 ·
57 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

二十二、注意力机制与序列模型

通用注意力机制给定查询向量qqq和一组键值对kivii1N{(ki​vi​i1N​AttentionqKV∑i1NαiviAttentionqKVi1∑N​αi​vi​其中注意力权重αi\alpha_iαi​αiexp⁡scoreqki∑j1Nexp⁡scoreqkjαi​∑j1N​expscoreqkj​))expscoreq。
原创
博文更新于 2025.11.15 ·
67 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

二十一、循环神经网络及其变体

序列数据在NLP中无处不在,具有以下关键特性:数学形式化:对于序列 X=(x1,x2,…,xT)X = (x_1, x_2, \dots, x_T)X=(x1​,x2​,…,xT​),我们希望建模条件概率:P(xt∣x1,x2,…,xt−1)P(x_t | x_1, x_2, \dots, x_{t-1})P(xt​∣x1​,x2​,…,xt−1​)RNN的核心思想:引入隐状态(hidden state) 来记忆历史信息。RNN单元的计算过程:ht=σ(Whhht−1+Wxhxt+bh)ot=Whoht
原创
博文更新于 2025.11.14 ·
89 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

二十、深度学习框架与环境搭建

数据处理库NLP专用库Jupyter环境。
原创
博文更新于 2025.11.13 ·
33 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

十九、文本表示与向量化

词袋模型是自然语言处理中最基础、最直观的文本表示方法。其核心思想是:将文本视为一个"词的袋子",忽略词序和语法结构,只关注词的出现频率。数学模型:给定文档集合D={d1,d2,…,dN}D = \{d_1, d_2, \dots, d_N\}D={d1​,d2​,…,dN​},构建词汇表V={w1,w2,…,wM}V = \{w_1, w_2, \dots, w_M\}V={w1​,w2​,…,wM​},则每个文档did_idi​可以表示为M维向量:vi=[f(w1,di),f(w2,di),…,f(wM,
原创
博文更新于 2025.11.12 ·
46 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

十八、文本预处理与基础技术

文本清洗与规范化是预处理的基础,直接影响后续处理的质量中文分词是中文NLP的核心技术,需要结合词典、统计和深度学习方法词性标注与命名实体识别为文本添加语言学标注,支持更深入的语言理解句法分析揭示文本的结构信息,是深层语言理解的基础这些基础技术构成了NLP系统的基石,在后续章节中,我们将基于这些预处理后的文本,学习如何将文本转换为数值表示,进而构建各种NLP应用。特别需要注意的是,不同的应用场景可能需要不同的预处理策略。例如,情感分析可能不需要深入的句法分析,而机器翻译则需要完整的语言学分析。
原创
博文更新于 2025.11.12 ·
39 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

十七、自然语言处理概述

本章系统介绍了自然语言处理的基本概念、发展历程和主要应用领域。NLP的核心挑战在于处理语言的歧义性和复杂性,需要通过多层次的语言学分析来解决。技术发展脉络从基于规则的方法,到统计方法,再到深度学习和预训练模型,每一次范式转变都带来了性能的显著提升。数学基础在NLP中至关重要,从概率论到线性代数,从优化理论到信息论,都为NLP模型提供了理论基础。应用广泛性表明NLP技术已经渗透到各行各业,从基础的文本分类到复杂的人机对话,都有着重要的实用价值。
原创
博文更新于 2025.11.12 ·
97 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

十六、EfficientNet详解:革命性的复合缩放与高效网络设计

如果需要更大的灵活性,我们可以使用TensorFlow从头构建EfficientNet模型。"""构建EfficientNet的stem部分""""""构建EfficientNet的head部分""""""构建完整的EfficientNet-B0模型"""# 定义MBConv配置 (扩展因子, 输出通道, 层数, 步长, 是否使用SE)# 构建stem# 构建MBConv模块if i > 0: # 同一stage中除了第一层,其他层步长都为1stride = 1。
原创
博文更新于 2025.11.12 ·
49 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

十五、ResNet详解:从原理到实战

残差学习:学习残差映射而非直接映射快捷连接:实现恒等映射,缓解梯度消失瓶颈设计:1×1卷积降维和升维,减少计算量。
原创
博文更新于 2025.11.11 ·
53 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

十四、GoogleNet深度学习模型全面解析:从Inception思想到实践

多尺度特征提取:并行使用不同大小的卷积核捕获多样化特征1×1卷积降维:显著减少参数量和计算复杂度辅助分类器:缓解梯度消失问题并提供正则化全局平均池化:替代全连接层,减少过拟合风险。
原创
博文更新于 2025.11.11 ·
328 阅读 ·
17 点赞 ·
0 评论 ·
0 收藏

十三、More Deeper:VGG详解,从网络结构到实战

主要贡献深度的重要性:证明了增加网络深度可以显著提升模型性能统一的设计:简洁统一的3×3卷积核设计可复现性:结构清晰,易于实现和复现局限性参数量大:全连接层参数过多,导致模型庞大训练耗时:深度网络训练时间较长内存消耗:需要大量GPU内存。
原创
博文更新于 2025.11.11 ·
167 阅读 ·
5 点赞 ·
0 评论 ·
0 收藏

十二、深度学习里程碑式模型:AlexNet

AlexNet由Alex Krizhevsky、Ilya Sutskever和Geoffrey Hinton提出,是第一个真正意义上的深度卷积神经网络成功案例。在此之前,传统的计算机视觉方法主要依赖于手工设计的特征。AlexNet作为深度学习的里程碑,其设计思想至今仍影响着现代神经网络架构。架构设计:交替的卷积层和池化层,后接全连接层技术创新:ReLU、Dropout、LRN等技术的成功应用工程实现:GPU并行计算的大规模应用。
原创
博文更新于 2025.11.11 ·
182 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

十一、深度学习图像分类问题

本教程从数学基础到实践应用全面介绍了深度学习图像分类的关键技术。理解这些数学原理不仅有助于正确应用现有方法,还能为解决新问题提供理论指导。实际应用中,建议根据具体任务特点平衡模型复杂度和数据特性,持续迭代优化。数据增强通过数学变换增加数据多样性卷积网络通过局部连接和权重共享有效处理图像微调策略利用预训练模型的迁移学习能力优化算法和正则化技术确保模型有效训练严格的评估体系保证模型实际应用价值。
原创
博文更新于 2025.11.11 ·
41 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

一、安装TensorFlow

宝子们,今天给大家带来一篇超实用的 AI 模型部署攻略!就算你用的是 MacMini M4 丐版,也能轻松驾驭 DeepSeek 大模型,实现图形化界面交互和 API 调用,赶紧来康康吧!
原创
博文更新于 2025.11.10 ·
1394 阅读 ·
14 点赞 ·
0 评论 ·
3 收藏

十、卷积神经网络(CNN)详解与LeNet-5实战教程

本教程详细介绍了卷积神经网络的原理、核心概念,并通过LeNet-5的实战案例展示了如何在TensorFlow中实现CNN。卷积操作的数学原理和实际计算CNN的核心概念:卷积核、池化、填充、步长等LeNet-5的经典架构详解完整的实战案例,包含TensorBoard可视化进阶内容包括现代改进和数学推导通过本教程,学习者可以深入理解CNN的工作原理,并掌握在实际项目中应用CNN的能力。
原创
博文更新于 2025.11.10 ·
298 阅读 ·
10 点赞 ·
0 评论 ·
0 收藏

九、神经网络的构建方式详解

数学原理yfθxtrainingyfθ​xtraining其中θ\thetaθ是模型参数,trainingtraining是训练/推理模式标志。适用场景:研究级模型、动态结构、自定义训练逻辑。
原创
博文更新于 2025.11.10 ·
108 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

八、深度学习中的正则化

正则化是机器学习中防止过拟合的核心技术。直观理解:正则化如何限制模型复杂度数学原理:各种正则化方法的公式推导实践技能:在TensorFlow中的具体实现调参经验:如何选择和应用不同的正则化方法记住正则化的本质:在模型复杂度和泛化能力之间找到最佳平衡点。在实际项目中,建议从简单的L2正则化开始,逐步尝试更复杂的方法,通过实验找到最适合你数据和任务的策略。关键公式回顾LtotalwLdatawλRwLtotal​wLdata​wλRw。
原创
博文更新于 2025.11.10 ·
98 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多