大模型星球
码龄4年
求更新 关注
提问 私信
  • 博客:389,516
    社区:2
    动态:4,819
    视频:3
    394,340
    总访问量
  • 209
    原创
  • 9,081
    排名
  • 1,096
    粉丝
  • 13
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
加入CSDN时间: 2021-07-19

个人简介:SCI/论文带读/本硕博毕业论文/中文核心期刊/EI会议/期刊/顶会发刊论文指导 文章相关资源可关注V.X【服务号】:AI技术星球 发送:211C 自取

博客简介:

Java_rich的博客

查看详细资料
个人成就
  • 获得2,986次点赞
  • 内容获得13次评论
  • 获得3,615次收藏
  • 代码片获得252次分享
  • 原力等级
    原力等级
    6
    原力分
    2,170
    本月获得
    19
创作历程
  • 126篇
    2025年
  • 42篇
    2024年
  • 1篇
    2023年
  • 2篇
    2022年
  • 48篇
    2021年
成就勋章
TA的专栏
  • 计算机视觉
    24篇
  • 大模型
    39篇
  • 人工智能
    187篇
  • 程序人生
    135篇
  • 论文
    51篇
  • 成长学习
    132篇
  • 图像处理
    31篇
  • 数学基础
    6篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 2

TA参与的活动 3

TA的推广
兴趣领域 设置
  • 人工智能
    opencv机器学习人工智能深度学习自然语言处理知识图谱图像处理nlp
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

37人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

一文搞懂李飞飞的空间智能(世界模型)

AI教母李飞飞指出当前大语言模型(LLM)存在根本局限——缺乏对物理世界的"根基"理解,只是"能言善辩的瞎子"。她提出的"空间智能"旨在为AI构建"世界模型",使其真正理解三维空间的物理规律。这种能力包含三大核心:生成性(创建符合物理规则的3D环境)、多模态(处理多种输入输出形式)和交互性(模拟"感知-行动"循环)。实现面临三大挑战:设计通用训练目标、获取带空间信息的数据(通过2D反推3D、合成数据、新型传感
原创
博文更新于 2025.12.12 ·
637 阅读 ·
15 点赞 ·
0 评论 ·
13 收藏

监督微调SFT vs 强化学习训练RLHF

摘要:本文探讨了大语言模型(LLM)的两种主要训练范式:监督微调(SFT)和强化学习(RL)。SFT通过特定领域数据优化模型输出,适用于机器翻译、情感分析等生成性任务;RL则通过奖励机制引导模型符合人类偏好,适用于评分、排序等任务。文章详细比较了两者的任务定义、适用场景、训练数据和方法,并介绍了PPO、DPO等常用RL算法。这些方法共同构成了从预训练到企业级落地的完整AI模型优化路径。
原创
博文更新于 2025.11.29 ·
848 阅读 ·
19 点赞 ·
0 评论 ·
11 收藏

大模型算法工程师月薪5W!!2026 AI人才趋势全解析!抓住AI时代的个人新机会!

AI人才需求爆发式增长,大模型算法岗月薪可达5.2万。2023年AI应用元年开启后,近60%高科技企业将AI人才视为核心招聘指标。调研显示,企业更看重实际项目经验(52.5%)和算法基础(60.3%),名校学历(28.8%)重要性下降。技术研发类岗位薪酬显著高于非技术岗,约58%企业计划扩招AI人才。AI正从技术能力向业务能力转化,复合型人才和具备持续学习能力者更具竞争力。建议求职者注重培养创造力、同理心等AI难以替代的能力,把握产品层、应用层等细分领域机会。
原创
博文更新于 2025.11.26 ·
588 阅读 ·
15 点赞 ·
0 评论 ·
14 收藏

NeurIPS满分论文来了!

摘要:清华大学与上海交通大学联合团队在NeurIPS2025发表满分论文,颠覆性指出基座模型本身而非强化学习(RLVR)决定大模型推理上限。研究通过pass@k指标对比实验发现,RLVR仅优化底模已有能力而非扩展新能力,且蒸馏方法更具进化潜力。该结论对当前主流RLVR技术路径提出挑战,引发对相关领域投入方向的重新思考。论文采用多基准测试验证,团队包含清华LeapLab多名优秀研究者。作者强调该发现并非否定RL价值,但确证了底模潜力被低估的事实。
原创
博文更新于 2025.11.25 ·
472 阅读 ·
11 点赞 ·
0 评论 ·
19 收藏

万字拆解:Agent 到底是什么? 有哪些使用场景

摘要:Agent(智能体)正从被动应答转向主动执行,重塑人机协作方式。其核心由四大组件构成:大脑(LLM)负责决策、技能(Tools)实现行动、记忆(Memory)保持连贯性、规划(Planning)拆解任务。文章详细阐述了Agent在产品研发、运营增长、客户服务和企业流程中的落地场景,通过自动化PRD生成、智能客服、跨系统协同等应用实现效率提升。同时指出当前存在成本、可靠性、安全性和维护复杂度等挑战,呼吁从业者以"智能体优先"思维重构业务流程,建议从具体场景切入实践,在生产力革命中抢占
原创
博文更新于 2025.11.20 ·
1101 阅读 ·
27 点赞 ·
0 评论 ·
18 收藏

对人工智能毫无了解,看不懂Transformer和BERT论文?别慌!导师亲授破局思路

摘要:针对初学者阅读Transformer和BERT论文的困难,文章建议采取分阶段学习策略:1)先暂停硬啃论文,补充深度学习、NLP和注意力机制等基础知识;2)通过"小白版解读"了解论文整体框架;3)拆分阅读论文,重点看摘要、引言和模型结构图;4)主动提问和讨论。强调建立知识基础比直接阅读更重要,推荐采用"先补基础再拆读,不懂就问"的方法逐步理解核心论文。
原创
博文更新于 2025.11.19 ·
316 阅读 ·
8 点赞 ·
0 评论 ·
3 收藏

LSTM之父向何恺明开炮:我学生才是残差学习奠基人

残差学习创始权之争再起:LSTM之父为合作伙伴发声 摘要:LSTM之父Jürgen Schmidhuber近日发声,质疑何恺明团队对残差学习的首创权。他指出,其合作伙伴Sepp Hochreiter早在1991年就提出循环残差连接解决梯度消失问题,这一思想最终演变为LSTM的核心机制和后来的ResNet。事实上,这已是Jürgen多次挑战深度学习领域重要成果的原创归属,此前他曾对图灵奖结果、GAN和Transformer等提出类似质疑。尽管这些争议尚未得到广泛认可,但确实展现了深度学习技术发展的传承性。这场
原创
博文更新于 2025.11.19 ·
582 阅读 ·
8 点赞 ·
0 评论 ·
13 收藏

一图搞懂深度学习:多模态学习如何像人一样理解世界?

《多模态学习:AI的"巴黎浪漫感知"之旅》 摘要:通过人类感知巴黎的生动类比,本文形象揭示了多模态学习的核心原理:1)多源输入:AI同步处理图像、文本、音频等多元信息;2)跨模态协同:建立不同模态间的语义关联;3)特征编码:将异构数据转化为统一表征;4)对齐校验:确保多源信息的一致性;5)决策融合:加权整合各模态特征;6)综合输出:生成比单模态更丰富的理解。整个过程如同游客用视听触觉全方位体验巴黎,最终AI也能像人类一样,通过"感官协同"获得对世界的立体认知。
原创
博文更新于 2025.11.05 ·
848 阅读 ·
9 点赞 ·
0 评论 ·
8 收藏

又登1区!多模态深度学习发文大道果真宽又阔啊!

多模态深度学习是目前AI领域的热点研究方向,尤其在医疗诊断、情感分析等应用场景表现出色。该领域学术热度高,创新空间大,开源资源丰富,具备"入门有路径、创新有空间、成果易落地"的特点。核心优势在于跨模态融合的天然创新属性和产业需求驱动,但也面临跨学科门槛、数据算力成本等挑战。高效出成果的关键在于选对细分赛道(如医疗影像融合),聚焦单一环节创新(如优化跨模态注意力机制),并借助现有框架快速验证。该领域成果兼具理论价值与应用潜力,是当前高性价比的论文产出方向。
原创
博文更新于 2025.11.04 ·
901 阅读 ·
14 点赞 ·
0 评论 ·
9 收藏

MiniMax发布全新大模型M2,综合能力直逼GPT-5

中国AI独角兽MiniMax发布新一代开源大模型MiniMax-M2,在权威测评中位列全球前五、开源第一,性能媲美OpenAI和谷歌等巨头。该模型在速度上超越ClaudeSonnet4.5近一倍,价格仅为其8%,打破了智能水平、速度和成本的"不可能三角"。目前模型已开源并限时免费,旨在推动AI普惠化。其卓越表现获得海外科技界认可,被视为中国AI企业以"高智能、低成本"策略冲击全球AI格局的重要突破。
原创
博文更新于 2025.10.28 ·
977 阅读 ·
11 点赞 ·
0 评论 ·
20 收藏

一区收割机,SAM+医学图像分割为啥刷爆顶会顶刊?新突破!

SAM在医学图像分割领域展现出巨大潜力,其泛化能力和交互式特性可有效解决医学标注成本高的痛点。该方向需求刚性、创新空间大,近期在CVPR、IEEE TMI等顶会顶刊涌现大量研究成果,涉及提示优化、模块增强、弱监督等创新路径。公开数据集丰富、评估指标明确,且开源资源充足(如MedSAM、SAM-Med2D),研究门槛相对可控。通过适配医学图像特性(多模态、噪声等)的"微创新"即可产出高水平论文,是当前学术热点。本文汇总前沿论文及代码资源,助力研究者快速切入这一高潜力领域。
原创
博文更新于 2025.10.22 ·
826 阅读 ·
8 点赞 ·
0 评论 ·
18 收藏

彻底搞懂深度学习-强化学习和智能体(动图讲解)

本文探讨了强化学习与智能体的区别及联系。强化学习是一种通过试错和反馈来优化决策的方法论,而智能体则是一个完整的自主系统架构。两者可独立存在,也可结合形成强化学习智能体。随着大语言模型的发展,出现了基于LLM的新型智能体,它以语言为通用接口,主要分为对话式、任务导向型和多智能体协作系统三种模式。传统智能体和LLM智能体各有优势,适用于不同场景:前者适合精确控制和实时反应,后者擅长自然语言交互和快速开发。未来AI系统将根据需求灵活选择或结合这两种技术路径。
原创
博文更新于 2025.10.15 ·
521 阅读 ·
19 点赞 ·
0 评论 ·
16 收藏

吃透AI新一波高薪红利,你只差这一块拼图(大模型LLM)

【摘要】随着AI技术的快速发展,大模型岗位需求激增,传统开发者的技能面临转型挑战。国务院近期发布政策推动AI应用落地,企业大模型岗位招聘指数高达94.16,显示AI技术已成为程序员必修课。转型成功案例表明,原有开发经验结合大模型实战能力是关键。系统化学习+商业项目实战的培训模式,能帮助开发者将传统经验转化为AI竞争力。当前技术浪潮不是短暂机会,而是职业发展的必经之路,传统开发者需用大模型思维升级技能栈,在新领域找到不可替代的位置。(150字)
原创
博文更新于 2025.10.11 ·
399 阅读 ·
8 点赞 ·
0 评论 ·
7 收藏

Sora 2:AI 视频的 GPT-3.5 时刻,正在重构创意世界的规则

AI视频生成迎来重大突破,OpenAI推出Sora2实现三大技术飞跃:物理仿真精度提升72%,实现真实世界物理规律模拟;音画同步误差小于3帧,支持多语言语音和情感化音效;"世界状态记忆"技术确保多镜头连贯性。配套SoraApp构建社交创作生态,支持数字分身植入和IP授权,广告、影视等行业面临重构。该技术将专业级创作门槛降至大众级别,开启"创意平权"新时代,目前已在美加开启测试,同时强化了内容安全机制。
原创
博文更新于 2025.10.11 ·
1045 阅读 ·
10 点赞 ·
0 评论 ·
28 收藏

错过这本AIGC书,相当于少走半年弯路!

《一本书读懂AIGC》全面解析ChatGPT、AI绘画等AIGC技术,从基础操作到行业应用,涵盖Prompt设计、绘画参数调试等实用技巧,半小时即可生成专业作品。书中不仅讲解技术使用,还深入探讨AIGC对生产力、智能文明的影响及伦理问题,适合零基础读者快速入门。2023年AIGC爆发之际,本书是职场人、创业者把握AI时代的实用指南,让读者轻松掌握AI技术,发现AI应用的无限可能。
原创
博文更新于 2025.10.09 ·
234 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

读完《大语言模型提示工程》,终于摸清 LLM 高效输出的 “密码”!

《Sanet.st_PromptEngineeringforLLMs》是一本关于优化大语言模型(LLM)提示设计的实用指南。书中强调"提示设计逻辑"的重要性,提出"角色设定+任务指令+约束条件"的黄金三角结构,可显著提升AI输出的精准度。作者指出常见误区如冗长提示会稀释核心指令,并针对不同LLM提供适配技巧。该书适合从新手到资深用户,提供了一套可落地的框架,帮助用户将LLM从"会说话"转变为"会做事"的高效工具。
原创
博文更新于 2025.10.09 ·
260 阅读 ·
9 点赞 ·
0 评论 ·
0 收藏

大模型新手必备AI基础有哪些?AI基础知识、Hugging Face 工具库等

摘要:大模型学习需要扎实的AI基础,主要包括四大模块:1.数学理论(线性代数、概率统计、最优化理论);2.机器学习核心(数据划分、性能评估、经典算法思想);3.深度学习基础(神经网络组件、Transformer架构);4.编程工具链(Python、PyTorch、HuggingFace等)。建议学习路径:先补数学基础,再学机器学习思维,深入理解Transformer架构,最后通过实践项目巩固。掌握这些基础后,才能更好地理解大模型原理并进行后续研究开发。
原创
博文更新于 2025.09.23 ·
865 阅读 ·
10 点赞 ·
0 评论 ·
18 收藏

人人都要学的AI大模型全栈学习路线

AI大模型已成为各行业智能化转型的核心驱动力,从金融风控到工业质检,大模型正深度赋能企业场景。本课程为零基础学员提供从理论到实践的完整学习路径,涵盖Transformer、LLM等核心技术及26+实战项目,助力产品经理、程序员等职场人群掌握大模型应用能力。课程突出三大优势:专家直播教学、20+行业案例拆解、私人化模型部署,帮助学员成为AI解决方案专家,把握薪资增长新机遇。在AI应用爆发初期,掌握大模型技术将成为职业发展的关键竞争力。
原创
博文更新于 2025.09.23 ·
1218 阅读 ·
14 点赞 ·
0 评论 ·
29 收藏

李飞飞空间智能新成果震撼问世!3D世界生成进入「无限探索」时代

斯坦福教授李飞飞创立的WorldLabs发布空间智能模型Marble预览版,支持通过单张图片或文本生成持久可导航的3D世界。该模型突破性在于:1)生成规模更大、风格多样的3D场景;2)支持无缝导出高斯点云用于二次开发;3)允许拼接多个场景构建宏大环境。目前免费开放测试,用户可通过白名单申请体验。相比谷歌Genie,Marble强调生成世界的永久性和自由探索特性。开发者赞赏其大规模3D生成能力,同时期待进一步提升细节表现。
原创
博文更新于 2025.09.22 ·
450 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

彻底搞懂深度学习-基于知识图谱的多模态推理(动图讲解)

《基于知识图谱的多模态推理:AI如何像人类一样"看懂"与"想通"》 摘要:本文探讨了人工智能如何通过知识图谱实现多模态推理能力。知识图谱以三元组形式存储事实、常识和情境知识,为AI提供认知基础;多模态推理则让AI能同时处理图像、文本等信息并进行逻辑推理。技术架构包含知识图谱嵌入、跨模态注意力机制和多步推理链构建三个关键环节,使AI不仅能识别场景元素,还能理解其内在关联。这种结合代表了AI从模式识别向智能理解的重要跨越,未来有望实现更接近人类的认知能力。
原创
博文更新于 2025.09.18 ·
976 阅读 ·
11 点赞 ·
0 评论 ·
20 收藏
加载更多