大模型应用场景
码龄5年
求更新 关注
提问 私信
  • 博客:2,042,524
    社区:7
    2,042,531
    总访问量
  • 1,354
    原创
  • 7,048
    粉丝
  • 9
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
目前就职: 百度
加入CSDN时间: 2021-06-11

个人简介:国内最早一批投身到AGI项目上的工程师之一,吃饱了当时最早的一波红利,大模型也必将成为未来发展的新的方向和趋势,想要快人一步先行了解和学习大模型的可以私信我。

博客简介:

Python栈

查看详细资料
个人成就
  • 获得11,727次点赞
  • 内容获得143次评论
  • 获得16,176次收藏
  • 代码片获得64,219次分享
  • 博客总排名19,942名
  • 原力等级
    原力等级
    9
    原力分
    10,409
    本月获得
    15
创作历程
  • 126篇
    2025年
  • 169篇
    2024年
  • 879篇
    2023年
  • 183篇
    2022年
成就勋章
TA的专栏
  • 大模型
    36篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

TA的推广
兴趣领域 设置
  • 人工智能
    opencv数据挖掘语音识别计算机视觉目标检测机器学习人工智能caffe深度学习神经网络自然语言处理sklearncnnmllibword2vectensorflow目标跟踪keras知识图谱rnnlstm自动驾驶dnn生成对抗网络mxnetpytorch机器翻译语言模型oneflowmlnetpaddlepaddlegrumnnboostingtransformerxlnetbertopenvino边缘计算超分辨率重建智慧城市视觉检测图像处理nlp数据分析scikit-learn聚类集成学习迁移学习分类回归gpt-3spark-mlAI作画tf-idfstable diffusionchatgptDALL·E 2craiyonImagenDreamFusionAudioLMYOLObard文心一言ocr
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

UltraRAG 2.0:仅需5%代码,轻松实现复杂RAG系统

UltraRAG 2.0是基于MCP架构的RAG框架,通过YAML声明式配置实现复杂逻辑,仅需传统框架5%代码量。它提供组件化封装、灵活扩展和轻量流程编排,支持多阶段推理系统,在复杂多跳问题上性能提升约12%。该框架显著降低开发门槛,让研究者专注于算法创新,适用于智能客服、教育辅导等多种场景。
原创
博文更新于 2025.09.22 ·
744 阅读 ·
10 点赞 ·
0 评论 ·
28 收藏

多模态RAG最佳实践:小白到程序员的完整指南,图文表格全能解析

本文提出的多模态RAG方法采用模态特定处理、后期融合和关系保留的技术架构,通过结构保留的文档分割、模态特定内容提取、HTML转换、语义分块及多模态向量化,有效处理包含文本、图像、表格的混合内容。该方法在性能、准确性与复杂度间实现最佳平衡,相比传统RAG系统在处理复杂多模态查询时性能提升23%,同时保持了良好的灵活性和模块化特征,为大多数组织提供了技术可行性
原创
博文更新于 2025.09.22 ·
1129 阅读 ·
16 点赞 ·
0 评论 ·
21 收藏

大家都在用Agent做什么?7种Agent框架对比!国内一站式Agent搭建平台大盘点!

代理(Agent)乃一种智能实体,具备自主环境感知与决策行动能力,旨在达成既定目标。作为个人或组织之数字化替身,AI代理执行特定任务与交易,其核心价值在于简化工作流程,削减繁复性,并有效降低人力投入与沟通障碍,促进效率与协作的双重提升。简而言之,代理技术让AI成为高效助手,助力个人与组织在复杂多变的环境中更加游刃有余。
原创
博文更新于 2025.06.25 ·
1916 阅读 ·
31 点赞 ·
0 评论 ·
25 收藏

大模型应用开发:大模型分类和常见大模型

语言大模型(NLP):是指在自然语言处理(Natural Language Processing,NLP)领域中的一类大模型,通常用于处理文本数据和理解自然语言。这类大模型的主要特点是它们在大规模语料库上进行了训练,以学习自然语言的各种语法、语义和语境规则。例如:GPT系列(OpenAI)、Bard(Google)、文心一言(百度)。
原创
博文更新于 2025.06.25 ·
1440 阅读 ·
20 点赞 ·
0 评论 ·
18 收藏

如何搭建个人AI知识库?个人整体思路总结

分享一下我的整体思路。我觉得方法都是次要的,因为每个人的需求、情况都不同——唯有思路可以借鉴。出发点和对应解法:
原创
博文更新于 2025.06.21 ·
1200 阅读 ·
24 点赞 ·
0 评论 ·
11 收藏

RAG知识库搭建,手把手教你构建RAG系统

自从发现可以利用自有数据来增强大语言模型(LLM)的能力以来,如何将 LLM 的通用知识与个人数据有效结合一直是热门话题。关于使用微调(fine-tuning)还是检索增强生成(RAG)来实现这一目标的讨论持续不断。检索增强生成 (RAG) 是一种使用来自私有或专有数据源的信息来辅助文本生成的技术。它将检索模型(设计用于搜索大型数据集或知识库)和生成模型(例如大型语言模型 (LLM),此类模型会使用检索到的信息生成可供阅读的文本回复)结合在一起。
原创
博文更新于 2025.06.21 ·
1173 阅读 ·
11 点赞 ·
0 评论 ·
20 收藏

别再傻傻分不清!一文讲透大模型里的 RAG、Agent、微调和提示词工程

CSDN独家福利最近,人工智能大模型火得一塌糊涂,各种新名词也层出不穷:RAG、Agent、微调、提示词工程……是不是听着就头大?别担心,今天咱们就用大白话,把这些概念一次性讲清楚,让你彻底搞懂它们是什么、有什么用,以及它们之间的区别和联系。
原创
博文更新于 2025.06.19 ·
1164 阅读 ·
18 点赞 ·
0 评论 ·
20 收藏

从大模型(LLM)、检索增强生成(RAG)到智能体(Agent)的应用

通过上一章的介绍,你可以发现OpenAI已经大规模使用工程化的技术使用户能够基于自己的知识库对其GTP系列大模型进行“增强”,从而实现更加垂直化、个性化的能力。那么,如果你基于成本或安全的考虑,想在私域进行自有知识库的“增强”,甚至切换成其它的大模型来使用这个“增强”,就不得不考虑自行开发实现了,这时候就需要了解检索增强生成(RAG)概念和向量数据库技术的应用。检索增强生成(RAG)技术人工智能的应用方法,它通过结合传统的信息检索技术与最新的生成式深度学习模型,来提升信息的准确性和相关性。
原创
博文更新于 2025.06.19 ·
1257 阅读 ·
27 点赞 ·
0 评论 ·
13 收藏

AI企业赋能!如何利用大模型赋能生产并提升竞争力?

如今,大模型的种类繁多,涵盖面广,但如何把它们应用到企业自身的业务当中,提升企业的技术水平和市场竞争力,却需要考虑到一个非常关键的问题:如何将大模型落地?这需要我们深入探讨大模型的投入成本和收益是否值得,并寻找有效的应用领域。如果我们没有思考清楚这些问题,企业要么盲目跟进,要么躺平观望。在长远发展的角度来看,清楚地认识到大模型的实际价值和应用领域,对企业的发展至关重要。
原创
博文更新于 2025.06.18 ·
972 阅读 ·
18 点赞 ·
0 评论 ·
7 收藏

ai蒸馏核心讲解,什么是蒸馏技术?

“蒸馏”技术实际上是指知识蒸馏(Knowledge Distillation),这是一种用于压缩和优化大模型的机器学习方法。其核心思想类似于传统蒸馏:大模型(教师模型)包含丰富的知识,而小模型(学生模型)通过学习大模型的输出,从而在保持高性能的同时降低计算成本。
原创
博文更新于 2025.06.18 ·
647 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

在中国做AI难,做AI Agent容易

基于其内部的知识库、工作流模型和强大的推理能力,对感知到的信息进行分析、判断,并规划出实现目标的最佳行动路径。在中国可以轻松地实现从规划、订票、支付到入住的全流程自动化,这在很多支付和信用体系尚不完善的国家是难以想象的。从电商、外卖、短视频、网约车,到工业制造、智慧城市、数字政务,几乎所有行业都完成了深度的数字化改造。的关键,它能从每一次任务执行的成功与失败中学习,不断优化自身的知识库和决策模型,形成长期记忆,变得越来越。从赋能平台的兴起,到垂直行业的深度耕耘,我们已经看到,中国的。
原创
博文更新于 2025.06.17 ·
644 阅读 ·
13 点赞 ·
0 评论 ·
20 收藏

RAG 2.0时代来临,我们会面对什么?

相比之下,全文搜索和稀疏向量主要表达精确的语义。LLM横行的年代,大多数人言则Agent,事实确实如此,LLM的落地一定是Agent,RAG也不例外。在具体实践过程中,除了将多路查询结果进行归一化之外,在将相关的文本分段交给大模型之前,我们一般会限制传递给大模型的分段个数(即 TopK,可以在重排序模型参数中设置),这样做的原因是大模型的输入窗口存在大小限制(一般为 4K、8K、16K、128K 的 Token 数量),你需要根据选用的模型输入窗口的大小限制,选择合适的分段策略和 TopK 值。
原创
博文更新于 2025.06.17 ·
873 阅读 ·
30 点赞 ·
0 评论 ·
20 收藏

大模型减肥秘籍:蒸馏、RAG和微调,让你轻松玩转大模型

蒸馏:让小模型继承大模型的智慧,适合“减肥”跑得快。RAG:给模型加个外援,适合知识密集型任务。微调:精修短板,适合定制化需求。这三招就像武侠里的不同武功,蒸馏是“传功”,RAG是“借力”,微调是“点穴”,看你需要啥就用啥。CSDN独家福利。
原创
博文更新于 2025.05.10 ·
719 阅读 ·
7 点赞 ·
0 评论 ·
7 收藏

浅谈AI大模型中的蒸馏技术

蒸馏”技术实际上是指知识蒸馏(Knowledge Distillation),这是一种用于压缩和优化大模型的机器学习方法。其核心思想类似于传统蒸馏:大模型(教师模型)包含丰富的知识,而小模型(学生模型)通过学习大模型的输出,从而在保持高性能的同时降低计算成本。前排提示,文末有大模型AGI-CSDN独家资料包哦!1.知识蒸馏的过程教师模型(Teacher Model)训练先训练一个大规模基础模型,这个模型能力很强,但计算开销大。生成软标签(Soft Labels)
原创
博文更新于 2025.05.10 ·
809 阅读 ·
5 点赞 ·
0 评论 ·
19 收藏

一文详解什么是知识蒸馏

在蒸馏过程中,将相同输入同时输入教师模型和学生模型,教师模型为学生模型提供知识指导,通过最小化学生模型输出与教师模型输出之间的差异(如使用交叉熵损失、均方误差损失等),优化学生模型参数,使学生模型学习教师模型的知识。教师模型训练过程中,能学习到数据中的“暗知识”,如数据分布规律、特征之间的隐含关系等。它通过将一个复杂的大模型(称为教师模型,Teacher Model)的知识转移到一个较小的模型(称为学生模型,Student Model)中,使得学生模型在保持较小规模的同时,能够尽可能地接近教师模型的性能。
原创
博文更新于 2025.05.10 ·
2256 阅读 ·
25 点赞 ·
0 评论 ·
33 收藏

人人都能懂的大模型知识:大模型预训练/微调/rag/蒸馏

在DeekSeek R1的论文中提到,通过蒸馏让QWen等模型获得了同等的效果。那么,什么是蒸馏?2014年,Geoffrey Hinton在 Distilling the Knowledge in a Neural Network 中提出知识蒸馏的概念:即将一个复杂的大模型(Teacher Network)上学习到的知识迁移到另一个更适合部署的小模型上(Student Network)。
原创
博文更新于 2025.05.09 ·
1089 阅读 ·
13 点赞 ·
0 评论 ·
11 收藏

微调(Fine-tuning)大模型常见方法详解

微调大模型的常见方法有很多种,选择哪种方法取决于读者的数据量、计算资源、任务需求等因素。全量微调:适用于大数据量、充足计算资源的情况,效果最直接。冻结部分层:适用于小数据量场景,能减少过拟合。添加任务特定层:适用于需要特定输出的任务,如分类、回归等。低秩适配:适用于资源受限或者需要轻量级微调的情况。知识蒸馏:适用于将大模型知识迁移到小模型,提升推理效率。CSDN独家福利。
原创
博文更新于 2025.05.09 ·
885 阅读 ·
19 点赞 ·
0 评论 ·
13 收藏

一文带你搞懂什么是蒸馏微调和RAG

模型蒸馏是一种模型压缩和知识迁移的技术,旨在将一个大型、复杂且性能优异的教师模型中的知识传递给一个较小、计算效率更高的学生模型。(老师把复杂知识浓缩成简单方法教给学生,学生成为"小老师",能用更少的力气解决大部分问题) 通过蒸馏,学生模型可以在保留教师模型大部分性能的同时,显著减少计算成本和模型参数规模。(老师懂得多但贵,学生便宜但也懂老师的皮毛,也能用、性价比高!AI里就是:大模型回答问题的时候,先快速搜索公司自己积累的资料(比如产品手册、客户档案),再结合自己的知识回答问题。二 蒸馏/微调/RAG。
原创
博文更新于 2025.05.09 ·
365 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

开发者主要依赖的三大技术路径深度解析:检索增强生成、模型微调、知识蒸馏

在技术选型的十字路口,没有绝对的最优解。RAG以其灵活的知识整合能力在动态场景中闪耀,微调在深度领域适应中展现统治力,而蒸馏则在效率至上的战场开疆拓土。明智的架构师应像交响乐指挥家一样,让不同技术在自己的音域完美发声,最终谱写出AI落地的华美乐章。
原创
博文更新于 2025.05.08 ·
850 阅读 ·
32 点赞 ·
0 评论 ·
15 收藏

重磅消息,新一代通义千问模型 Qwen3正式开源了!

2025 年 4 月 29 日凌晨,阿里正式开源了新一代通义千问模型 Qwen3,这一举动无疑在人工智能领域投下了一颗重磅炸弹,Qwen3 凭借其卓越的性能和诸多创新优势,迅速登顶全球开源大模型王座,让众多开发者和研究人员为之振奋。前排提示,文末有大模型AGI-CSDN独家资料包哦!Qwen3 是阿里巴巴通义千问团队推出的最新一代大型语言模型。它包含 8 个不同尺寸的模型,既有稠密模型(Dense Model),也有混合专家(Mixture-of-Experts,MoE)模型。
原创
博文更新于 2025.05.08 ·
1778 阅读 ·
40 点赞 ·
0 评论 ·
9 收藏
加载更多