智能汽车人
码龄8年
求更新 关注
提问 私信
  • 博客:321,458
    社区:491
    动态:41,698
    363,647
    总访问量
  • 198
    原创
  • 7,320
    排名
  • 2,374
    粉丝
  • 18
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:内蒙古
加入CSDN时间: 2017-11-01

个人简介:目前笔者在自动驾驶大厂工作,自动驾驶行业资深算法工程师,希望通过博客带给读者朋友们更多人工智能以及自动驾驶领域相关的知识和经验。如果有问题或者项目需要咨询、合作,欢迎私信或者添加本人微信。

博客简介:

智能汽车人的博客

博客描述:
记录自动驾驶之路
查看详细资料
个人成就
  • 获得4,578次点赞
  • 内容获得58次评论
  • 获得4,103次收藏
  • 代码片获得1,186次分享
  • 原力等级
    原力等级
    6
    原力分
    2,206
    本月获得
    51
创作历程
  • 118篇
    2025年
  • 72篇
    2024年
  • 9篇
    2023年
成就勋章
TA的专栏
  • 自动驾驶Planning决策规划
    付费
    24篇
  • 自动驾驶感知&端到端大模型
    付费
    47篇
  • 从零打造自动驾驶算法及仿真系统
    付费
    11篇
  • 聊聊自动驾驶技术
    50篇
  • 人形机器人
    3篇
  • 人工智能行业研究
    50篇
  • 个人思考&博客问答
    10篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 5

TA的推广
兴趣领域 设置
  • 人工智能
    自动驾驶
  • 数学
    动态规划
  • 学习和成长
    创业创新
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 关注/订阅/互动
  • 代码仓
  • 收藏
  • 资源
更多
  • 最近

  • 文章

  • 专栏

  • 关注/订阅/互动

  • 代码仓

  • 收藏

  • 资源

  • 社区

搜索 取消

自动驾驶大模型---香港科技大学之DSDrive

本篇博客主要介绍了香港科技大学提出的DSDrive自动驾驶方案,主要还是依赖QWen多模态模型的能力,属于VLA那一派,但DSDrive是基于闭环测试做的实验,目前基于闭环实验的自动驾驶大模型很少,这一点还是值得肯定的。至于模型的输入,输出以及结构,差别不是特别大,DSDrive还用了一个蒸馏,和理想小鹏的有些相似,确保模型部署能够提升推理的实时性。
原创
博文更新于 2025.12.17 ·
1512 阅读 ·
39 点赞 ·
0 评论 ·
36 收藏

行业分析---领跑汽车2025第三季度财报

零跑汽车2025年第三季度财报显示:交付量达17.4万辆,同比增长101.77%;营收194.5亿元,同比增长97.3%,连续两个季度实现盈利(Q3净利润1.5亿元)。尽管销量增长显著,但净利润未随营收同步提升,反映行业价格战压力。值得关注的是其研发投入偏低(Q3仅12.1亿元),智能化发展可能依赖外部供应商。当前现金流达339.2亿元,成本控制成效显现,但持续盈利能力与技术创新路径仍需观察。
原创
博文更新于 2025.12.08 ·
568 阅读 ·
19 点赞 ·
0 评论 ·
16 收藏

行业分析---理想汽车2025第三季度财报

理想汽车2025年第三季度财报显示其面临严峻挑战,交付量环比下滑至9.32万辆,总营收同比下降36.2%至273.64亿元,由盈转亏净亏损6.24亿元。主要问题包括车型换代导致的交付量下降、毛利率下滑(整车毛利率降至15.5%)以及自由现金流恶化(-89亿元)。尽管研发投入持续增加(30亿元),但公司在激烈市场竞争中表现不佳。分析师建议理想汽车应回归汽车主业,暂缓AI眼镜等非核心业务扩张,专注提升产品竞争力以应对行业"淘汰赛"。
原创
博文更新于 2025.12.03 ·
699 阅读 ·
20 点赞 ·
0 评论 ·
19 收藏

行业分析---蔚来汽车2025第三季度财报

蔚来汽车2025年Q3财报显示营收217.9亿元(同比+16.7%),交付量87071辆(同比+40.8%),但净亏损34.8亿元。虽然毛利率提升至13.9%,现金储备达367亿元,但高研发(23.9亿元)和销售费用(41.6亿元)持续拖累盈利。Q4预计交付12-12.5万辆(营收327-340亿元),但分析师认为需毛利率突破20%且营收达300亿才能盈利。当前亏损趋势下,管理层宣称的年底盈利目标实现难度较大。
原创
博文更新于 2025.12.01 ·
974 阅读 ·
21 点赞 ·
0 评论 ·
23 收藏

自动驾驶---规划之Corridor的构建

自动驾驶运动规划中的安全走廊构建是关键环节,主要分为几何关系构建和模型构建两种方法。几何方法包括标准矩形和凸多边形方案,前者通过碰撞检测调整边界,后者利用"球面翻转"技术高效生成星形凸多面体,更适合复杂场景。模型构建方法则通过深度学习预测走廊几何特征。研究表明,凸多边形方法在计算效率(毫秒级处理数千点)和场景适应性方面优势显著,已在机器人导航和轨迹规划中验证有效性。
原创
博文更新于 2025.11.27 ·
1187 阅读 ·
28 点赞 ·
0 评论 ·
17 收藏

自动驾驶---阿里巴巴之AutoDrive-R²(VLA)大模型

阿里高德地图团队提出AutoDrive-R²VLA大模型,通过思维链与强化学习提升自动驾驶的推理与自反思能力。该模型基于Qwen2.5-VL构建,采用两阶段训练:先在自建nuScenesR²-6K数据集(含6000个带推理步骤的样本)进行监督微调,再结合物理奖励框架优化轨迹生成。在nuScenes和Waymo数据集测试中,模型在轨迹精确度和合理性上超越现有方法,但输出轨迹仍较粗糙,需进一步优化控制接口。研究聚焦解决自动驾驶决策可解释性与动作连贯性问题。
原创
博文更新于 2025.11.26 ·
770 阅读 ·
13 点赞 ·
0 评论 ·
31 收藏

行业分析---小米汽车2025第三季度财报

摘要:本文分析了小米汽车2025年第三季度财报数据。报告显示,小米当季交付10.9万辆新车,智能电动汽车业务收入283亿元,同比增长199.2%。公司整体营收1131亿元,净利润113亿元。值得注意的是,智能汽车业务首次实现经营收益7亿元,毛利率达25.5%。这表明小米汽车已突破盈亏平衡点,展现出良好的发展态势。作者认为,年销百万辆才是小米汽车真正的挑战目标。
原创
博文更新于 2025.11.24 ·
922 阅读 ·
11 点赞 ·
0 评论 ·
13 收藏

行业分析---小鹏汽车2025第三季度财报

小鹏汽车2025年第三季度财报显示,其交付量达116,007辆,营收203.8亿元,同比增长101.8%,汽车销售营收占比88.6%。净亏损收窄至3.8亿元,毛利率提升至20.1%。研发和销售开支同比增加,现金储备达483.3亿元。尽管营收增长显著,但亏损收窄幅度有限,预计盈亏平衡或推迟至2026年。
原创
博文更新于 2025.11.19 ·
1146 阅读 ·
25 点赞 ·
0 评论 ·
26 收藏

自动驾驶大模型---大疆车载(卓驭科技)之GenDrive

大疆旗下卓驭科技即将推出自动驾驶大模型GenDrive,采用感知-理解-生成闭环系统。该模型通过多模态数据融合和生成式推理能力,可生成多种未来驾驶场景并选择最优轨迹,支持自然语言交互和个性化驾驶风格学习。GenDrive具备硬件无关性,适配32-1000TOPS算力平台,采用双阶段训练模式,实现通用性与个性化兼备。功能包括自定义驾驶风格、在线学习用户偏好、语音控制驾驶行为等。该技术有望推动高阶智驾在不同价位车型上的普及。
原创
博文更新于 2025.11.11 ·
748 阅读 ·
17 点赞 ·
0 评论 ·
26 收藏

自动驾驶大模型---特斯拉FSD模型架构终浮出水面

特斯拉在ICCV 2025会议上展示了FSD V14的重大突破:采用单一端到端神经网络处理多传感器输入,直接输出控制指令。该系统通过海量车队数据训练,能处理极端场景(如预判失控车辆),并开发了神经模拟器用于评估和生成合成数据。技术还扩展至Optimus人形机器人,展现了强大的跨平台泛化能力。特斯拉强调该方法具有高度可扩展性,能实现安全舒适的自动驾驶体验,并计划推出专为Robotaxi设计的CyberCab。
原创
博文更新于 2025.11.04 ·
1236 阅读 ·
22 点赞 ·
0 评论 ·
14 收藏

Ubuntu 20.04 安装 Autoware.universe自动驾驶仿真工具

在入门自动驾驶领域的时候,笔者主要使用的工具是QT+ROS+Gazebo,在该行业工作一段时间之后,发现各家都有自己的仿真平台,但是如果要做城区的仿真,前面所说的工具链显然是不够便捷的。目前主要调研了两个开源的平台,第一个是 Autoware.universe,第二个就是国内Apollo平台,这次先说说Autoware平台。首先介绍Autoware的安装及使用,后面会大概说一下自己使用的感受。
原创
博文更新于 2025.11.01 ·
5286 阅读 ·
26 点赞 ·
20 评论 ·
46 收藏

自动驾驶大模型---Momenta之飞轮大模型

Momenta作为中国领先的自动驾驶企业,在城市NOA市场占据超60%份额。随着与智己汽车等合作落地,Momenta的技术路线在实测中表现优异,市场份额预计2025年将提升至70%。其融合感知与规划的一体化模型,为解决复杂场景下的自动驾驶问题提供了新思路。
原创
博文更新于 2025.10.28 ·
1016 阅读 ·
31 点赞 ·
0 评论 ·
22 收藏

Ubuntu 20.04 安装 Apollo 8.0&vscode仿真调试

在上一篇博文中介绍了Autoware的仿真,其中各模块的算法大家可以做些了解,但是和主流自驾公司还是有些区别,而且Apollo的算法相对来说还是更贴近量产方案的,因此本篇主要介绍Apollo最新版本8.0的安装调试。
原创
博文更新于 2025.10.27 ·
2829 阅读 ·
20 点赞 ·
1 评论 ·
45 收藏

自动驾驶---基于安全走廊的端到端

本文提出了一种结合安全走廊的端到端自动驾驶方法,通过深度学习生成车辆可行驶的安全区域,并在此约束下进行轨迹优化。系统采用多任务网络处理传感器数据,输出感知结果、参考轨迹及安全走廊,再通过可微优化模块生成符合动力学约束的轨迹。实验显示该方法在CARLA模拟器中碰撞率降低47%,紧急制动减少32%。相比纯端到端方案,该方法通过结构化安全约束提升了可靠性,但面临长尾场景泛化和实时性优化等挑战。论文为自动驾驶安全框架提供了新思路,但安全走廊标注的复杂性仍是实际应用难点。
原创
博文更新于 2025.10.22 ·
1809 阅读 ·
40 点赞 ·
0 评论 ·
30 收藏

自动驾驶---特斯拉FSD V14更新

特斯拉已开始向车主推送(有监督)完全自动驾驶(FSD)v14 版本更新,这是该系统时隔一年推出的首次重大更新。FSD v14 的研发借鉴了特斯拉在RobotTaxi中的经验,并将相关技术整合到面向普通消费者的车辆软件中。
原创
博文更新于 2025.10.20 ·
1229 阅读 ·
25 点赞 ·
0 评论 ·
29 收藏

自动驾驶大模型---元戎启行的VLA大模型

本文聚焦元戎启行最新研发的视觉-语言-动作(VLA)大模型,该模型通过融合多模态输入和思维链技术,显著提升了智能驾驶系统在复杂场景下的决策能力。文章详细解析了VLA架构(包含视觉/文本编码器、LLM核心及轨迹/文本解码器)及其训练方法(监督+强化学习),并对比了小鹏、理想等车企的类似方案。测试案例显示,该模型能有效处理特殊车道规则识别、货车盲区等挑战场景。作者指出,VLA模型是通向完全自动驾驶的关键技术,但目前尚未公开采用世界模型训练方式。
原创
博文更新于 2025.10.13 ·
857 阅读 ·
9 点赞 ·
0 评论 ·
22 收藏

自动驾驶大模型---聊聊地平线的HSD

本文介绍了地平线在自动驾驶领域的技术进展,重点分析了其HSD(Horizon SuperDrive)系统。HSD基于2023年CVPR最佳论文UniAD的端到端架构,通过BEV特征提取、智能体跟踪、轨迹预测等模块实现从图像输入到轨迹输出的全流程处理。系统采用强化学习训练,具备低延时响应、防御性驾驶和拟人化操控等特点,能智能应对施工区绕行、复杂路口等场景。相比传统模块化方案,HSD的一段式端到端设计显著提升了自动驾驶的安全性和舒适性,展现了接近DeepSeek R1的"智能涌现"能力。
原创
博文更新于 2025.10.02 ·
1399 阅读 ·
24 点赞 ·
0 评论 ·
17 收藏

自动驾驶---多模态集成的预测和决策(MIND)

香港科技大学沈老师实验室提出MIND框架,解决自动驾驶在复杂交互环境中的导航难题。该框架创新性地整合预测与决策,通过多模态场景表示、动态分支机制和场景树构建,实现对多样化交通交互的精准建模。关键技术包括层次化场景编码、交互模态概率评估、端到端联合优化及不确定性管理。实验证明,MIND能有效处理动态环境中的多模态交互,为自动驾驶系统提供更安全、高效的决策方案。该研究为复杂交通场景下的自动驾驶决策提供了新思路。
原创
博文更新于 2025.10.07 ·
1225 阅读 ·
34 点赞 ·
0 评论 ·
11 收藏

自动驾驶大模型---BEVDriver

本文介绍了一种新型自动驾驶模型BEVDriver,该模型结合大型语言模型(LLM)的推理能力和鸟瞰图(BEV)特征的空间表示,实现端到端闭环驾驶。BEVDriver通过BEV编码器融合多视角图像和激光雷达点云,并利用LLM生成未来轨迹点。实验结果表明,BEVDriver在LangAuto基准测试中表现优异,驾驶分数比现有最优方法高出35.1%。该模型在开环评估和泛化能力方面也优于其他方法,但在处理距离指令时存在不足。未来将重点提升模型的鲁棒性、时间感知能力和可解释性。
原创
博文更新于 2025.09.28 ·
894 阅读 ·
33 点赞 ·
0 评论 ·
27 收藏

自动驾驶大模型---上海交通大学之DriveTransformer

本文提出DriveTransformer,一种创新的端到端自动驾驶框架。该模型采用并行任务查询机制,通过任务自注意力、传感器交叉注意力和时间交叉注意力实现流式、并行和稀疏的Token交互,解决了传统方法中误差累积和计算挑战等问题。实验表明,DriveTransformer在bench2drive和nuscenes基准上均达到SOTA性能,支持目标检测、运动预测、在线建图和规划等任务,显著提升了自动驾驶系统的准确性和实时性。
原创
博文更新于 2025.09.27 ·
1026 阅读 ·
15 点赞 ·
0 评论 ·
19 收藏
加载更多