流烟默
码龄14年
求更新 关注
提问 私信
  • 博客:5,097,053
    社区:4,950
    问答:995
    动态:63
    视频:36
    5,103,097
    总访问量
  • 961
    原创
  • 860
    排名
  • 11,635
    粉丝
  • 31
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河南省
加入CSDN时间: 2012-05-24
博客简介:

小小默:进无止境

博客描述:
QQ:1274654983 欢迎交流~~
查看详细资料
个人成就
  • 获得3,465次点赞
  • 内容获得520次评论
  • 获得8,337次收藏
  • 代码片获得26,051次分享
  • 原力等级
    原力等级
    8
    原力分
    6,653
    本月获得
    17
创作历程
  • 54篇
    2025年
  • 84篇
    2024年
  • 18篇
    2023年
  • 20篇
    2022年
  • 22篇
    2021年
  • 45篇
    2020年
  • 117篇
    2019年
  • 216篇
    2018年
  • 298篇
    2017年
  • 161篇
    2016年
成就勋章
TA的专栏
  • 机器学习
    28篇
  • clickhouse
    2篇
  • 深入浅出JVM虚拟机
    46篇
  • 分布式应用架构
    26篇
  • SpringBoot
    102篇
  • SpringCloud
    43篇
  • Redis/Memcache
    23篇
  • ZooKeeper
    6篇
  • Elasticsearch/MongoDB
    9篇
  • Kafka/ActiveMQ/RabbitMQ
    21篇
  • 多线程并发Thread
    23篇
  • Linux全面入门
    42篇
  • Linux - 软件安装
    29篇
  • Apache - Tomcat
    13篇
  • Docker
    11篇
  • Nginx
    13篇
  • MySQL
    45篇
  • MySQL高级
    45篇
  • Oracle
    22篇
  • Vue | 小程序
    29篇
  • 数据结构 | 算法
    41篇
  • Spring
    72篇
  • 设计模式-REST
    31篇
  • Spring Data JPA
    17篇
  • SpringMVC
    56篇
  • MyBatis / Plus
    55篇
  • Hibernate
    21篇
  • Shiro-SpringSecurity
    16篇
  • logger
    8篇
  • WebService
    12篇
  • JAVA
    43篇
  • JavaSE-File-POI
    22篇
  • IO-NIO-Netty
    16篇
  • Java网络编程
    14篇
  • 信息安全与加密解密
    11篇
  • HTML5 | Thymeleaf | Freemarker
    28篇
  • 系统运维
    18篇
  • Maven | Jenkins | Gradle
    17篇
  • SVN/Git/IDEA
    14篇
  • Python | PHP | PLSQL
    21篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

TA的推广
兴趣领域 设置
  • Java
    java
  • 数据结构与算法
    数据结构
  • 云原生
    云原生
  • 人工智能
    机器学习深度学习
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

模型理解与可解释性图表案例解读

观察点结论🔥 最关键特征是最核心预测因子📈 主要驱动因素心理压力(学业、经济)是主要风险来源🧍‍♂️ 人口属性年龄、性别、城市等基本无关紧要🧩 模型合理性符合医学逻辑,具备良好可解释性⚠️ 潜在问题过度依赖自杀意念,需警惕漏诊“本模型识别出‘是否有过自杀念头’为最具影响力的预测因子,占比超过65%,表明该变量在抑郁症筛查中具有决定性作用。其次,学业压力、经济压力和整体压力水平也显著影响预测结果,而性别、年龄等人格特征则贡献微弱。
原创
博文更新于 2025.11.16 ·
868 阅读 ·
30 点赞 ·
0 评论 ·
12 收藏

集成学习算法随机森林(Random Forest)基础入门

简单 + 鲁棒 + 高效 + 可解释(相对) = 工业界的“瑞士军刀”偏差-方差权衡(通过集成降低方差)准确性与可维护性自动化与可控性即使在深度学习时代,随机森林仍是快速验证、小数据建模、特征工程评估的首选工具。随机森林与 XGBoost/LightGBM 的对比如何可视化随机森林中的单棵树在不平衡数据上的改进策略(如 class_weight)随机森林的数学原理(泛化误差界)随机森林算法(Random Forest Algorithm):是一套构建模型的规则和流程(即“怎么做”)。
原创
博文更新于 2025.11.09 ·
1265 阅读 ·
20 点赞 ·
0 评论 ·
18 收藏

Optuna超参数调优图例解读之平行坐标图

本文分析了一张用于超参数调优的平行坐标图,揭示了各参数与模型性能的关系。核心发现包括:学习率应控制在0.02-0.04,树数量建议500-900,最大深度4-6,特征采样比例0.65-0.85。虽然图中显示部分参数(如正则化系数)影响较小,但实际最优解中这些参数仍取非零值,表明超参数之间存在复杂交互效应。最终得出了包含学习率0.0278、树数量631等参数的最佳配置,取得了0.9194的高性能指标。
原创
博文更新于 2025.11.08 ·
821 阅读 ·
19 点赞 ·
0 评论 ·
15 收藏

Optuna超参数调优图例解读之Optimization History Plot(优化历史图)

这张优化历史图展示了超参数调优的过程,横轴为试验次数(0-99),纵轴为目标值(如准确率)。蓝点表示每次试验得分,红线记录全局最佳值。图中显示:1)前10次试验快速找到0.92的高分;2)中期(10-60次)保持稳定;3)后期无显著提升。结论:优化过程高效收敛,0.92可能是性能上限,建议停止调优并输出最佳参数组合。若需进一步改进,可尝试局部搜索或更换优化算法。
原创
博文更新于 2025.11.08 ·
916 阅读 ·
8 点赞 ·
0 评论 ·
15 收藏

Optuna超参数调优图例解读之超参数重要性图

你的模型性能主要由决定,其次是和;其余参数基本可以忽略。
原创
博文更新于 2025.11.08 ·
838 阅读 ·
21 点赞 ·
0 评论 ·
17 收藏

模型理解与可解释性图表案例解读之SHAP 瀑布图(Waterfall Plot)

SHAP Waterfall Plot 是一种“逐步累积”的可视化方法模型预测值如何从“全局平均值”开始,一步步被每个特征推动,最终到达这个样本的预测结果。→ 全体用户的平均风险得分→ 这个用户的风险得分每一步:一个特征“跳下去”,把水位(预测值)往上或往下推这个用户虽然曾有自杀念头(高危),但由于压力极低、生活方式健康,模型综合判断其为“低风险”。这说明:单一高危因素不能决定一切,整体生活状态才是关键。
原创
博文更新于 2025.11.08 ·
1146 阅读 ·
12 点赞 ·
0 评论 ·
21 收藏

常见的模型性能评估图表案例解读

大学生心理健康预测模型评估分析 本研究采用两种核心指标评估分类模型性能:精确率-召回率曲线(PR曲线)和受试者工作特征曲线(ROC曲线)。PR曲线(AP=0.943)显示模型在识别抑郁学生方面表现优异,即使召回率达到80%时精确率仍保持在0.9以上。ROC曲线(AUC=0.926)同样表明模型具备极强的判别能力,在低误判率下即可识别多数真实病例。两种曲线结果相互印证,证实模型在心理健康筛查中具有高准确性和稳定性。特别值得注意的是,该模型对少数类(抑郁学生)的识别能力突出,适合高校心理健康早期筛查场景。建议根
原创
博文更新于 2025.11.07 ·
928 阅读 ·
14 点赞 ·
0 评论 ·
17 收藏

模型训练过程监控指标案例解读

本文分析了机器学习模型的三联训练曲线图(损失图、AUC图和错误图),展示了模型在训练过程中表现。左图显示训练和验证损失持续下降并趋于稳定,表明模型收敛良好且未过拟合;中图AUC值达到0.915,证明模型具有很强的分类能力;右图错误率降至16%,显示模型具有较高准确度。综合分析表明该XGBoost模型训练充分、性能优越,适用于抑郁症筛查等实际应用。此外,文章还厘清了"学习曲线"、"训练曲线"和"验证曲线"的概念关系,指出每个图都是一个完整的学习曲线,
原创
博文更新于 2025.11.07 ·
648 阅读 ·
21 点赞 ·
0 评论 ·
21 收藏

机器学习中一些场景的模型评估与理解图表

机器学习模型评估与解释图表指南 本文系统整理了14种核心的机器学习图表工具,分为四大类: 性能评估:包括ROC曲线、PR曲线和混淆矩阵,用于量化模型分类能力 模型解释:特征重要性图、SHAP摘要和依赖图,揭示模型决策依据 训练监控:学习曲线、验证曲线和损失曲线,优化模型训练过程 业务分析:累计增益图、提升图和校准曲线,将技术指标转化为业务洞察 每种图表均包含: 核心指标说明(如AUC、F1等) 标准图例展示 专业解读要点 典型应用场景 这些可视化工具形成了从技术验证到业务决策的完整分析链条,适用于分类模型的
原创
博文更新于 2025.11.07 ·
1289 阅读 ·
27 点赞 ·
0 评论 ·
25 收藏

机器学习模型中预测方法predict和predict_proba

机器学习模型预测方法的选择和应用场景: predict() 与 predict_proba() 的区别 predict() 直接输出类别标签(如0/1),适用于只需分类结果的场景。 predict_proba() 输出概率(如类别1的概率),适用于需置信度、AUC计算或阈值调整的任务。 方法选择依据 仅需分类结果时用 predict();若需概率分析、调整阈值或评估模型性能(如AUC),则用 predict_proba()。 AUC-ROC与预测概率的关系 AUC完全依赖概率输出,通过不同阈值下的TPR/F
原创
博文更新于 2025.11.07 ·
698 阅读 ·
25 点赞 ·
0 评论 ·
29 收藏

机器学习中拟合、欠拟合、过拟合是什么

机器学习中的拟合问题与正则化方法 摘要:本文系统介绍了机器学习中的拟合问题。拟合指模型学习数据规律的过程,良好拟合需平衡训练表现与泛化能力。过拟合时模型过度记忆训练数据细节(如噪声),导致验证集表现差;欠拟合则因模型过于简单无法捕捉数据规律。防止过拟合的方法包括:正则化(L1/L2)、早停、数据增强等。L2正则化(Ridge)平滑权重,适用于多数场景;L1(Lasso)可实现特征选择;Elastic Net结合二者优点;Dropout专用于神经网络。选择方法需考虑模型类型、数据特点及需求,如线性模型优先L2
原创
博文更新于 2025.11.06 ·
750 阅读 ·
13 点赞 ·
0 评论 ·
12 收藏

机器学习中交叉验证(CV)、CV fold(交叉验证折) 和 数据泄露

本文介绍了机器学习中的交叉验证(CV)及相关概念。CV是一种评估模型性能的技术,常见形式是k折交叉验证,将数据分为k个子集(fold),每次用k-1个fold训练,1个验证,重复k次。重点强调了"未来信息泄露"问题,即在预处理时错误使用了验证/测试集信息,导致评估失真。正确的做法是:在每次CV中,先划分数据,仅用训练集计算预处理参数,再转换训练和验证集。文中还给出了实现5折分层交叉验证的代码示例,包括数据划分、模型训练和性能评估流程,确保评估结果可靠。
原创
博文更新于 2025.11.06 ·
886 阅读 ·
27 点赞 ·
0 评论 ·
26 收藏

超参数调优中Optuna 和贝叶斯优化区别与联系

Optuna与贝叶斯优化的关系: Optuna是一个基于Python的超参数优化框架,而贝叶斯优化是一种智能搜索策略。两者不是同一概念,但Optuna默认使用TPE算法(贝叶斯优化的一种实现)来高效调整超参数。 核心区别: 贝叶斯优化是数学方法(如TPE、高斯过程),通过历史数据建模指导参数选择; Optuna是工具库,支持多种优化算法(默认TPE),提供可视化、剪枝等易用功能。 总结:Optuna是执行贝叶斯优化等策略的实用工具,尤其适合自动化超参数调优。
原创
博文更新于 2025.11.06 ·
910 阅读 ·
9 点赞 ·
0 评论 ·
10 收藏

贝叶斯优化的核心评估单元 objective(trial) 深度解析

设计原则实现方式分离关注点动态参数(**params) vs 固定配置(等)可复现性统一控制所有随机源效率优先n_jobs=-1充分利用硬件鲁棒性自动处理类别不平衡(工程安全不将数据存入模型,仅传必要配置.fit()fit。
原创
博文更新于 2025.11.06 ·
1219 阅读 ·
16 点赞 ·
0 评论 ·
21 收藏

贝叶斯优化中的 trial 和 best_iteration 的区别与联系

Optuna的超参数优化过程分为两层:外层是n_trials表示的独立超参数实验次数(如100次),每次实验由Optuna选择一组超参数训练模型;内层是XGBoost模型自身的训练过程,通过best_iteration确定最优树的数量。两者分别控制全局超参数选择和局部模型训练优化。代码中还通过惩罚机制防止过早停止的模型被选中,确保选择泛化能力强的参数组合。最终选出验证集AUC最高的超参数作为最优解。
原创
博文更新于 2025.11.06 ·
842 阅读 ·
6 点赞 ·
0 评论 ·
20 收藏

基于Optuna 贝叶斯优化超参数时优化方向和监控指标是否可以不一致?

本文分析了Optuna和XGBoost在超参数优化中的分工协作关系。Optuna层面通过direction='maximize'设定以AUC最大化为优化目标;XGBoost层面则通过eval_metric=['logloss','auc']在训练过程中监控多个指标,其中logloss用于早停机制确保训练稳定性,auc用于辅助监控。这种设计实现了训练过程指标与优化目标的分离,既保证了训练稳定性又满足了业务需求。文章还讨论了优化策略的改进空间,但肯定了当前设计的合理性,认为这是职责分离的优秀实践。
原创
博文更新于 2025.11.06 ·
459 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

基于Optuna 贝叶斯优化超参数调优之使用TPE创建研究对象

本文介绍了使用Optuna框架创建超参数优化研究(Study)对象的核心语句optuna.create_study()。该对象用于管理整个优化过程,包含三个关键参数:1) direction='maximize'指定优化目标方向为最大化验证集AUC;2) sampler=TPESampler采用基于贝叶斯优化的Tree-structured Parzen Estimator算法,智能选择超参数组合;3) seed=self.random_state设置随机种子保证结果可复现。TPE算法通过区分"好
原创
博文更新于 2025.11.06 ·
802 阅读 ·
28 点赞 ·
0 评论 ·
15 收藏

XGBoost超参数调优完全指南:基于贝叶斯优化的智能调参系统

本文提出了一种基于贝叶斯优化的XGBoost超参数调优方法,特别针对学生抑郁预测等不平衡分类任务。该方法设计了完整的调优器架构,包含参数状态管理和安全预处理机制。核心优化过程采用TPE算法智能搜索超参数空间,并引入早停机制和过拟合惩罚策略。文章详细解析了10个关键参数的搜索范围和调优优先级,其中n_estimators、max_depth和learning_rate被列为最高优先级参数。该方法通过自动计算类别权重、多指标监控和异常处理机制,实现了高效稳健的超参数优化,在实际应用中取得了良好效果。
原创
博文更新于 2025.11.06 ·
1147 阅读 ·
23 点赞 ·
0 评论 ·
27 收藏

机器学习中的 fit()、transform() 与 fit_transform():原理、用法与最佳实践

机器学习中的fit()、transform()和fit_transform()方法详解:fit()用于从数据中学习转换规则或模型参数(如均值/方差等统计量),不改变原始数据;transform()应用已学规则进行数据转换;fit_transform()则合并两步操作,但仅限首次处理训练数据时使用。关键原则是防止数据泄露——测试集只能使用transform()复用训练集的规则。建议使用Pipeline自动化流程,确保预处理与模型训练的一致性。核心要义是"训练集学规则,测试集仅应用规则"。
原创
博文更新于 2025.11.05 ·
997 阅读 ·
19 点赞 ·
0 评论 ·
8 收藏

集成学习算法XGBoost(eXtreme Gradient Boosting)基础入门

XGBoost是一种高效的集成学习算法,基于梯度提升树框架,通过二阶导数优化、正则化和并行计算等技术提升模型性能。相比传统GBDT,XGBoost具有更快的训练速度、更好的泛化能力和更强的工程优化。核心优势包括:处理结构化数据表现优异、支持自定义损失函数、自动处理缺失值以及提供多语言接口。Python中可通过原生API或scikit-learn兼容API快速实现分类、回归等任务,适合金融风控、医疗诊断等高精度需求场景。
原创
博文更新于 2025.11.05 ·
1181 阅读 ·
8 点赞 ·
0 评论 ·
19 收藏
加载更多