HyperAI超神经
码龄7年
求更新 关注
提问 私信
  • 博客:2,561,198
    社区:12
    动态:2,476
    视频:8,482
    2,572,168
    总访问量
  • 1,470
    原创
  • 653
    排名
  • 8,843
    粉丝
  • 19
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:澳大利亚
加入CSDN时间: 2019-06-04

个人简介:链接人工智能新场景

博客简介:

HyperAI超神经

博客描述:
人工智能领域实验媒体,站在技术与人文的路口,读懂人工智能。
查看详细资料
个人成就
  • 获得16,597次点赞
  • 内容获得849次评论
  • 获得16,820次收藏
  • 代码片获得949次分享
  • 原力等级
    原力等级
    9
    原力分
    8,166
    本月获得
    189
创作历程
  • 518篇
    2025年
  • 417篇
    2024年
  • 171篇
    2023年
  • 20篇
    2022年
  • 81篇
    2021年
  • 227篇
    2020年
  • 173篇
    2019年
成就勋章
TA的专栏
  • 人工智能
    124篇
  • vLLM
    38篇
  • Triton
    45篇
  • TVM
    96篇
  • 每周编辑精选
    38篇
  • ScienceAI
    300篇
  • 人物
    9篇
  • 数据集汇总
    26篇
  • 科技大厂的商业帝国
    6篇
  • PyTorch
    27篇
  • 2023 Meet TVM
    4篇
  • IJCAI YES 2023
    1篇
  • Women TechMakers
    3篇
  • 机器学习编译

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 5

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    opencv计算机视觉自然语言处理tensorflowpytorchnlp
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

34人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

AI 论文周报丨英伟达开源模型/OpenAI基准测试/Agent系统/长上下文推理……AI 动态一文速递

12.8-12.12 AI 论文推荐
原创
博文更新于 22 小时前 ·
541 阅读 ·
5 点赞 ·
0 评论 ·
11 收藏

预测精度可提升60%,清华李勇团队提出神经符号回归方法,自动推导高精度网络动力学公式

清华大学电子工程系李勇教授及团队提出了一种神经符号回归方法 ND²,通过从数据中自动推导出数学公式来刻画系统动力学。该方法将高维网络上的搜索问题等价地简化为一维系统,并利用预训练神经网络引导高精度的公式发现。
原创
博文更新于 22 小时前 ·
503 阅读 ·
18 点赞 ·
0 评论 ·
7 收藏

GPT-5全面领先,OpenAI发布FrontierScience,「推理+科研」双轨检验大模型能力

2025 年 12 月 16 日,OpenAI 推出了旨在衡量专家级科学能力的基准测试 FrontierScience,并以「FrontierScience:evaluating AI’s ability to perform expert-level scientific tasks」为题发布论文成果。根据初步评估,GPT-5.2 在 FrontierScience-Olympiad 和 Research 任务中分别得分 25% 和 77%,领先于其他前沿模型。
原创
博文更新于 前天 19:01 ·
496 阅读 ·
8 点赞 ·
0 评论 ·
19 收藏

坚持提前监管,离开OpenAI后,Dario Amodei将AI安全写入公司使命

在全球 AI 竞速按下「加速键」的当下,Dario Amodei 却以「提前监管」的少数派立场成为硅谷最不可忽视的力量。从推动 Constitutional AI,到影响欧美监管框架,他试图为 AI 时代奠定一套类似 TCP/IP 的「治理协议」。这不仅关乎安全,更关乎未来十年 AI 能否从技术狂飙走向稳定应用。Amodei 的策略,正在重塑全球 AI 产业的底层逻辑。
原创
博文更新于 前天 14:52 ·
580 阅读 ·
15 点赞 ·
0 评论 ·
18 收藏

【vLLM 学习】vLLM TPU 分析

vLLM 是一款专为大语言模型推理加速而设计的框架,实现了 KV 缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多 vLLM 中文文档及教程可访问 →源码此脚本用于分析 vLLM 在特定预填充(prefill)或解码(decode)令牌形状下的 TPU 性能表现。注意:实际运行的服务器会混合处理多种形状的预填充和解码请求。假设您已在使用 TPU 环境(本测试基于 TPU v6e)并已按照完成 vLLM 安装。
原创
博文更新于 2025.12.17 ·
350 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

【Triton 教程】triton_language.load

Triton 是一种用于并行编程的语言和编译器。它旨在提供一个基于 Python 的编程环境,以高效编写自定义 DNN 计算内核,并能够在现代 GPU 硬件上以最大吞吐量运行。是 1 个 N 维指针张量,则加载 1 个 N 维张量。或 dtype=triton.PointerType 的块。是单元素指针,则加载 1 个标量。定义的块指针,则加载 1 个张量。应为 {“”, “ca”, “cg”} 中的一个。更多 Triton 中文文档可访问 →。triton.int1 的块。
原创
博文更新于 2025.12.17 ·
395 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

【TVM 教程】设置 RPC 系统

​远程过程调用(RPC)是 Apache TVM 中非常重要和有用的功能,它允许我们在真实硬件上运行已编译好的神经网络(NN)模型,无需手动操作远程设备,输出结果会通过网络自动返回。通过省去一些人工操作,比如将输入数据转储到文件、将导出的神经网络模型拷贝到远程设备、设置设备用户环境、将输出结果拷贝回主机开发环境,RPC 极大地提升了开发效率。此外,由于只有已编译神经网络模型的执行部分运行在远程设备上,所有其他部分都运行在主机开发环境中,因此可以使用任何 Python 包来完成预处理和后处理工作。
原创
博文更新于 2025.12.17 ·
345 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

【vLLM 学习】Prithvi Geospatial Mae

vLLM 是一款专为大语言模型推理加速而设计的框架,实现了 KV 缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多 vLLM 中文文档及教程可访问 →。
原创
博文更新于 2025.12.17 ·
335 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

【Triton 教程】triton_language.dot

Triton 是一种用于并行编程的语言和编译器。它旨在提供一个基于 Python 的编程环境,以高效编写自定义 DNN 计算内核,并能够在现代 GPU 硬件上以最大吞吐量运行。这 2 个块必须都是二维或三维的并且有兼容的内部维度。对于三维的块,tl.dot 执行批量矩阵乘积,其中每个块的第一维度代表批量维度。更多 Triton 中文文档可访问 →。返回 2 个块的矩阵乘积。
原创
博文更新于 2025.12.17 ·
242 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

【TVM 教程】Python 目标参数化

​对于任何支持的开发环境,TVM 都应该生成数值正确的结果。因此,在编写验证数值输出的单元测试时,这些单元测试应在所有受支持的开发环境上执行。由于这是一个非常常见的使用场景,TVM 提供了辅助函数来参数化单元测试,使它们可以在所有已启用且具有兼容设备的目标上运行。测试套件中的一个 Python 函数可以展开成多个参数化的单元测试,每个测试针对一个单一的目标设备。测试必须存在于已传递给 pytest 的文件或目录中。
原创
博文更新于 2025.12.17 ·
388 阅读 ·
5 点赞 ·
0 评论 ·
9 收藏

【vLLM 学习】Prefix Caching

vLLM 是一款专为大语言模型推理加速而设计的框架,实现了 KV 缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多 vLLM 中文文档及教程可访问 →。
原创
博文更新于 2025.12.17 ·
333 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

【Triton 教程】triton_language.view

Triton 是一种用于并行编程的语言和编译器。它旨在提供一个基于 Python 的编程环境,以高效编写自定义 DNN 计算内核,并能够在现代 GPU 硬件上以最大吞吐量运行。返回具有与输入相同元素但形状不同的张量,元素的顺序可能无法保持。更多 Triton 中文文档可访问 →。的成员函数调用,使用。
原创
博文更新于 2025.12.17 ·
356 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

【TVM 教程】交叉编译与 RPC

​在远程设备上设置 RPC 服务器;在本地设置目标设备的交叉编译配置;通过 RPC API 上传并远程运行内核程序。可右键另存为下载。
原创
博文更新于 2025.12.17 ·
562 阅读 ·
8 点赞 ·
0 评论 ·
13 收藏

CUDA初始团队成员锐评cuTile「专打」Triton,Tile范式能否重塑GPU编程生态竞争格局

2025 年 12 月,在 CUDA 发布近二十年后,NVIDIA 推出新的 GPU 编程入口「cuTile」,通过 Tile-based 编程模型重构 GPU 内核,使开发者无需深入 CUDA C++ 即可高效编写 Kernel,引发社区热议。尽管仍处早期,Tile 思维的抽象优势、社区探索迁移工具及实践尝试表明,cuTile 有潜力成为 GPU 编程新范式,其未来取决于生态成熟度、迁移成本及性能表现。
原创
博文更新于 2025.12.17 ·
312 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

集结完毕,COSCon‘25 开源集市伙伴正式亮相!

为了解决开源软件供应链中的暗点——长期存在的安全问题和隐患,中国科学院软件研究所于 2019 年发起开源软件供应链点亮计划,并于 2020 年正式开始了开源软件供应链点亮计划-开源之夏活动,旨在面向开源软件可靠供应链建设需求,引导高校学生参与操作系统内核、编译器、语言运行时等关键基础软件以及 RISC-V 生态建设,点亮供应链上的暗点,为开源生态、企业、产业输送具备丰富技术经验的、经过项目开发实践检验的高水平开源人才。早期采用者包括腾讯、美团、京东、小红书、知乎、快手、BOSS 直聘等知名互联网企业。
转载
博文更新于 2025.12.17 ·
19 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

线下论坛 | 北大/清华/Zilliz/MoonBit开源论道,解锁产研协同新范式

「产研开源协同论坛」将于 2025 年 12 月 7 日在北京举办,欢迎大家来玩!
原创
博文更新于 2025.12.16 ·
784 阅读 ·
8 点赞 ·
0 评论 ·
19 收藏

在线教程丨微软开源VibeVoice,可实现90分钟4角色自然对话

微软开源 VibeVoice,能够在 64K 上下文窗口中合成长达 90 分钟、包含最多 4 名说话人的语音,音色更为丰富、语调更趋自然,并捕捉真实对话氛围。「VibeVoice-Realtime TTS:实时语音合成服务」已上线 HyperAI 官网(hyper.ai)的教程版块,欢迎前来体验!
原创
博文更新于 2025.12.16 ·
667 阅读 ·
5 点赞 ·
0 评论 ·
9 收藏

集结完毕,COSCon‘25 开源集市伙伴正式亮相!

为了解决开源软件供应链中的暗点——长期存在的安全问题和隐患,中国科学院软件研究所于 2019 年发起开源软件供应链点亮计划,并于 2020 年正式开始了开源软件供应链点亮计划-开源之夏活动,旨在面向开源软件可靠供应链建设需求,引导高校学生参与操作系统内核、编译器、语言运行时等关键基础软件以及 RISC-V 生态建设,点亮供应链上的暗点,为开源生态、企业、产业输送具备丰富技术经验的、经过项目开发实践检验的高水平开源人才。早期采用者包括腾讯、美团、京东、小红书、知乎、快手、BOSS 直聘等知名互联网企业。
转载
博文更新于 2025.12.16 ·
27 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

低门槛试用Open-AutoGLM:屏幕理解+自动执行的智能体体验;Spatial-SSRL-81k构建空间感知的自监督提升路径

HyperAI 超神经为大家整理了 12.8-12.12 期间一系列极具价值且应用广泛的教程和数据集,涵盖智能体、计算机视觉、TTS 等多个领域~
原创
博文更新于 2025.12.15 ·
757 阅读 ·
17 点赞 ·
0 评论 ·
11 收藏

以不足10万结构数据训练,瑞士洛桑联邦理工提出PET-MAD,原子模拟精度媲美专业模型

瑞士洛桑联邦理工学院提出的 PET-MAD 模型,依托覆盖广泛原子多样性的数据集,在使用远少于传统规模的训练样本的情况下,仍实现了与专用模型相当的精度,为原子模拟向更高效、更普适的方向发展提供了有力示范。
原创
博文更新于 2025.12.15 ·
615 阅读 ·
21 点赞 ·
0 评论 ·
25 收藏
加载更多