大彤小忆
码龄7年
求更新 关注
提问 私信
  • 博客:1,380,644
    社区:7
    动态:2,072
    1,382,723
    总访问量
  • 322
    原创
  • 32,936
    粉丝
  • 21
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:香港
加入CSDN时间: 2019-03-19

个人简介:永远不要停下前进的脚步^o^

博客简介:

大彤小忆的博客

博客描述:
控制科学与工程专业的硕士,一直走在学习的路上,欢迎大家一起交流^o^~
查看详细资料
个人成就
  • 获得1,565次点赞
  • 内容获得592次评论
  • 获得6,494次收藏
  • 代码片获得11,453次分享
  • 博客总排名1,807,655名
创作历程
  • 11篇
    2022年
  • 240篇
    2021年
  • 73篇
    2020年
  • 12篇
    2019年
成就勋章
TA的专栏
  • 场景分类
    4篇
  • 计算机网络
    30篇
  • 遥感图像
    4篇
  • 目标检测
    14篇
  • 数据结构
    60篇
  • C++
    57篇
  • 算法
    20篇
  • 操作系统
    11篇
  • MySQL
    20篇
  • LeetCode刷题题解
    1篇
  • Git和GitHub
    2篇
  • 计算机视觉
    2篇
  • 机器学习
    26篇
  • 经验分享
    9篇
  • Python
    41篇
  • 软件安装
    11篇
  • 深度学习
    7篇
  • 论文阅读
    11篇
  • 数学建模
    8篇
  • MATLAB GUI
    12篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络tensorflow图像处理
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

上班后的第一个1024,加油!

发布动态 2022.10.24

Python排序进阶版:根据一个列表的顺序对其他列表进行排序

在Python中如果需要根据列表A对列表B进行排序的问题时有2种方法
原创
博文更新于 2022.08.09 ·
3166 阅读 ·
5 点赞 ·
0 评论 ·
14 收藏

Python实现排序

  在Python中可以使用提供的sort排序法对list实现排序。  Python提供两种内置排序的函数分别是sort()和sorted(),这两种函数用法差别在于sort()会直接修改原始的list进行排序,sorted()可迭代对象排序并返回新的list。  sort()函数参数:list.sort(key=None, reverse=False)实现整数的排序# 使用sort升序list = [4, 5, 8, 3, 7, 1, 2, 6, 10, 9]print("before
原创
博文更新于 2022.07.23 ·
2162 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

使用Python随机生成数据的一些方法

通过Python_Faker生成测试数据通过Python基础语法生成一些随机数利用26个字母和10个数字随机生成5个八位密码生成5个2位小数点的随机数生成5个随机整数数通过Python_Faker生成测试数据  通过Python_Faker生成测试数据需要安装Faker包,使用pip安装pip install Faker。  随机生成5个人的个人信息(包括用户名、年龄、性别、地址、工作、婚姻状态)并保存为.csv文件,代码如下所示。from faker import Fakerimport pa.
原创
博文更新于 2022.07.22 ·
3923 阅读 ·
3 点赞 ·
0 评论 ·
39 收藏

第一个1w了

发布动态 2022.06.26

设计一个卷积神经网络模型用于遥感图像的场景分类

  遥感图像场景分类是指对遥感图像中场景语义内容标签的映射过程,对高分辨率遥感影像的信息提取及内容理解有着重要的意义。主要的场景分类方法可以分为三类:第一类是基于底层视觉特征的场景分类方法,第二类是基于中层视觉表示的场景分类方法,第三类是基于高层视觉信息的场景分类方法。其中基于高层视觉信息的场景分类方法通过训练卷积神经网络模型来自动提取图像的抽象语义特征,卷积神经网络展现出很强的图像场景特征描述能力,解决了底层、中层特征对场景语义信息描述不准确的问题,打开了大幅提升场景分类效果的大门。  为实现遥感图像的
原创
博文更新于 2022.06.01 ·
4464 阅读 ·
10 点赞 ·
2 评论 ·
92 收藏

谢希仁计算机网络学习系列内容汇总

计算机网络一、概述二、物理层三、数据链路层四、网络层五、运输层六、应用层一、概述计算机网络(一)—— 概述(1、2):计算机网络在信息时代的作用、因特网概述计算机网络(一)—— 概述(3、4):三种交换方式、计算机网络的定义和分类计算机网络(一)—— 概述(5):计算机网络的性能指标计算机网络(一)—— 概述(6):计算机网络体系结构计算机网络(一)—— 概述(7):总结二、物理层三、数据链路层四、网络层五、运输层六、应用层...
原创
博文更新于 2022.06.01 ·
2460 阅读 ·
10 点赞 ·
4 评论 ·
65 收藏

计算机网络(四)—— 网络层(7、8、9):IPv4数据报的首部格式、网际控制报文协议ICMP、虚拟专用网VPN与网络地址转换NAT

计算机网络系列内容的学习目录→\rightarrow→谢希仁计算机网络学习系列内容汇总。 7. IPv4数据报的首部格式7.1 课后练习8. 网际控制报文协议ICMP8.1 课后练习9. 虚拟专用网VPN与网络地址转换NAT9.1 虚拟专用网VPN(Virtual Private Network)9.2 网络地址转换NAT9.3 课后练习7. IPv4数据报的首部格式7.1 课后练习  1. 以下关于IPv4数据报结构的描述中,错误的是( B )    A. IPv4数据报的首部长度是可变的.
原创
博文更新于 2022.06.01 ·
2956 阅读 ·
3 点赞 ·
0 评论 ·
15 收藏

遥感图像场景分类数据集

  目前国内外开发了很多可以用于场景分类任务的公开基准数据集,为这一领域的研究提供了便利。常用的遥感图像场景分类数据集有UC Merced Land-Use和NWPU-RESISC45两种。UC Merced Land-Use 提取码:txeuUC Merced Land-Use遥感数据集是由UC Merced计算机视觉实验室公布的用于遥感图像场景分类的公开数据集,包含21类场景,各类别场景样本展示如下图所示。  上图中具体每个类别为(1) agricultural、(2) airplane、
原创
博文更新于 2022.05.26 ·
10780 阅读 ·
7 点赞 ·
1 评论 ·
61 收藏

遥感图像目标检测数据集

  目前国内外开发了很多可以用于遥感图像目标检测任务的公开基准数据集,常用的有NWPU VHR-10和DOTA两种。NWPU VHR-10 提取码:73z5NWPU VHR-10遥感数据集是由西北工业大学公布的用于遥感图像目标检测的公开数据集,包含10类地物目标共800张遥感图像,具体有airplane、ship 、storage tank 、baseball diamond、tennis court、basketball court、ground track field、harbor、bridge、
原创
博文更新于 2022.05.26 ·
2569 阅读 ·
1 点赞 ·
0 评论 ·
36 收藏

使用卷积神经网络实现猫狗分类任务

一、数据集下载链接  使用卷积神经网络在猫狗分类数据集上实现分类任务。一、数据集下载链接  猫狗分类数据集
原创
博文更新于 2022.05.23 ·
4947 阅读 ·
17 点赞 ·
5 评论 ·
116 收藏

使用数据增强技术对已有样本进行扩充

  当数据集中的样本量较少时,直接将其输入网络进行训练可能会导致过拟合,所以需要对已有样本通过使用数据增强技术进行扩充。扩充时主要有翻转和旋转两种操作,其中翻转包含水平翻转、上下翻转两种,旋转包含逆时针旋转90∘90^{\circ}90∘、180∘180^{\circ}180∘、270∘270^{\circ}270∘三种。  具体代码如下所示。# -*- coding: utf-8 -*-from PIL import Imageimport osfile_dir = 'E:/Remote S
原创
博文更新于 2022.05.23 ·
2807 阅读 ·
1 点赞 ·
0 评论 ·
12 收藏

对保存的vgg16.ckpt模型实现特征图可视化

在使用NWPU VHR-10数据集训练Faster R-CNN模型之后,可以通过对保存的模型实现特征图可视化来进一步分析模型。
原创
博文更新于 2022.05.06 ·
1969 阅读 ·
0 点赞 ·
0 评论 ·
18 收藏

Python Codes.zip

发布资源 2020.12.15 ·
zip

使用ResNet101作为预训练模型训练Faster-RCNN-TensorFlow-Python3-master

  使用VGG16作为预训练模型训练Faster-RCNN-TensorFlow-Python3-master的详细步骤→Windows10+Faster-RCNN-TensorFlow-Python3-master+VOC2007数据集。  如果使用ResNet101作为预训练模型训练Faster-RCNN-TensorFlow-Python3-master,在之前使用VGG16作为预训练模型的训练步骤基础上需要修改几个地方。第一个,在之前的第6步时,改为下载预训练模型ResNet101,在./da
原创
博文更新于 2022.02.01 ·
7502 阅读 ·
2 点赞 ·
5 评论 ·
32 收藏

机器学习资料.zip

发布资源 2020.09.03 ·
zip

使用Python将DOTA数据集的格式转换成VOC2007数据集的格式

这里写目录标题一、VOC2007数据集二、DOTA数据集一、VOC2007数据集  VOC2007数据集的文件结构如下图所示。  其中,文件夹Annotations中存放的是图像的标注信息的xml文件,命名从000001.xml开始;文件夹ImageSets中存放的是图像划分的集合的txt文件,目标检测任务对应的train、val、trainval、test数据集的txt文件存放在Main文件夹中;文件夹JPEGImages中存放的是所有图片的jpg文件,命名从000001.jpg开始;文件夹Seg
原创
博文更新于 2021.12.28 ·
9679 阅读 ·
49 点赞 ·
209 评论 ·
155 收藏

使用DOTA数据集训练Faster R-CNN模型

一、所需文件下载链接二、基础环境配置三、训练及测试过程  使用Faster R-CNN算法在DOTA数据集上实现目标检测。  使用Faster R-CNN算法在VOC2007数据集上实现目标检测的详细步骤→Windows10+Faster-RCNN-TensorFlow-Python3-master+VOC2007数据集。一、所需文件下载链接Faster R-CNN源码及操作步骤Github链接→Faster-RCNN-TensorFlow-Python3。Faster-RCNN-Tensor.
原创
博文更新于 2021.12.28 ·
3283 阅读 ·
11 点赞 ·
19 评论 ·
29 收藏

使用Python将NWPU VHR-10数据集的格式转换成VOC2007数据集的格式

一、VOC2007数据集二、NWPU VHR-10数据集三、将NWPU VHR-10数据集的格式转换成VOC2007数据集的的格式一、VOC2007数据集  VOC2007数据集的文件结构如下图所示。  其中,文件夹Annotations中存放的是图像的标注信息的xml文件,命名从000001.xml开始;文件夹ImageSets中存放的是图像划分的集合的txt文件,目标检测任务对应的train、val、trainval、test数据集的txt文件存放在Main文件夹中;文件夹JPEGImage.
原创
博文更新于 2021.12.20 ·
3853 阅读 ·
19 点赞 ·
12 评论 ·
71 收藏

使用NWPU VHR-10数据集训练Faster R-CNN模型

一、所需文件下载链接  使用Faster R-CNN算法在NWPU VHR-10数据集上实现目标检测。  使用Faster R-CNN算法在VOC2007数据集上实现目标检测的详细步骤→Windows10+Faster-RCNN-TensorFlow-Python3-master+VOC2007数据集。一、所需文件下载链接Faster R-CNN源码及操作步骤Github链接→Faster-RCNN-TensorFlow-Python3。Faster-RCNN-TensorFlow-Pytho.
原创
博文更新于 2021.12.16 ·
5147 阅读 ·
9 点赞 ·
3 评论 ·
43 收藏
加载更多