小雷FansUnion
码龄13年
求更新 关注
提问 私信
  • 博客:5,079,566
    社区:30,186
    动态:294
    5,110,046
    总访问量
  • 1,501
    原创
  • 16,132
    粉丝
  • 1,039
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
目前就职: 百融云创科技股份有限公司
加入CSDN时间: 2012-09-19

个人简介:AI技术专家,懂商业的技术合伙人,自由开发者。个人微信:FansUnion 微信订阅号:XiaoLeiFansUnion。

博客简介:

决战决胜AI,放眼长期,稳中求进;知行合一,日拱一卒

博客描述:
学AI,让AI帮我打工
查看详细资料
个人成就
  • 领域专家: 后端开发技术领域
  • 获得3,091次点赞
  • 内容获得3,275次评论
  • 获得1,772次收藏
  • 代码片获得716次分享
  • 博客总排名11,830名
  • 原力等级
    原力等级
    5
    原力分
    1,415
    本月获得
    7
创作历程
  • 37篇
    2025年
  • 7篇
    2023年
  • 84篇
    2022年
  • 45篇
    2021年
  • 33篇
    2020年
  • 217篇
    2019年
  • 97篇
    2018年
  • 64篇
    2017年
  • 169篇
    2016年
  • 248篇
    2015年
  • 202篇
    2014年
  • 596篇
    2013年
  • 234篇
    2012年
成就勋章
TA的专栏
  • AI副业有术
  • AI2025
    35篇
  • 商业研究
    28篇
  • 中国象棋程序的设计与实现
    14篇
  • 性能分析和优化实践
    11篇
  • OpenJDK源码研究笔记
    16篇
  • 斗地主算法的设计与实现
    6篇
  • 新人毕业vs老人跳槽
    41篇
  • Mybatis源码研究笔记
    8篇
  • br那点事
    55篇
  • 知行合一2032日拱一卒
    67篇
  • 技术中台
    36篇
  • 技术合伙人
    23篇
  • Java技术专家
    47篇
  • 大学毕业4年
    19篇
  • 商业研究
    48篇
  • 创业投资
    156篇
  • 雷观
    77篇
  • 新人毕业-老人跳槽
    60篇
  • 大学-高中-北漂
    42篇
  • 随笔日记
    87篇
  • 程序员Coder
    26篇
  • 研发架构
    54篇
  • 产品业务
    51篇
  • 运营运维
    26篇
  • 日拱一卒
    241篇
  • Java-Web开发
    112篇
  • 中国象棋-斗地主
    20篇
  • OpenJDK-Mybatis源码研究
    23篇
  • 分布式-并发-性能
    20篇
  • Android-OC-微信
    39篇
  • 总结规划
    105篇
  • 读书笔记
    38篇
  • 文学作品
    15篇
  • 图片专题
    13篇
  • 杂七杂八
    12篇
  • 转载的
    49篇
  • 理论模型
    37篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 14

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    深度学习
友情链接
麦田itmyhome1990
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

深入理解MCP架构:智能服务编排、上下文管理与动态路由实战

本文详细介绍了MCP(Model Context Protocol)架构及其在智能服务编排中的实践。MCP通过Client、Host和Server三大组件实现灵活的服务调度,支持上下文管理、权限校验和动态路由。相比传统RPC,MCP更擅长处理多模型协作和复杂业务流,Host组件可智能拆解任务并调用不同Server。文章还展示了多渠道通知的实战案例,说明MCP如何并发调用邮件、短信和钉钉服务并汇总结果。该架构具有灵活性高、可维护性强等优势,特别适用于AI平台、智能对话等场景,技术栈推荐使用Spring Boo
原创
博文更新于 2025.07.03 ·
1628 阅读 ·
8 点赞 ·
0 评论 ·
10 收藏

FastGPT私有化部署完整指南

本文详细介绍了FastGPT私有化部署的完整指南,包括环境要求、Docker部署步骤和配置说明。主要内容涵盖:硬件/软件环境要求、Docker Compose部署流程、OpenAI及国产大模型配置、本地模型部署(Ollama/Xinference)、Nginx反向代理设置、数据库管理操作以及常见问题解决方案。部署过程涉及源码获取、环境配置、服务启动等关键步骤,并提供了多种大模型和向量模型的详细配置参数,为私有化部署FastGPT提供了全面的技术指导。
原创
博文更新于 2025.06.29 ·
1305 阅读 ·
7 点赞 ·
0 评论 ·
4 收藏

80%的知识库场景选择FastGPT,20%的复杂场景选择Dify

FastGPT与Dify在知识库领域各有优势:FastGPT以易用性胜出,适合快速搭建、技术新手和中小企业,提供直观的拖拽式工作流和友好中文支持;Dify功能更全面,适合复杂业务、专业技术团队和企业级应用,具备高级RAG策略和深度定制能力。实际选择取决于需求场景:80%的知识库应用推荐FastGPT,20%的复杂场景建议Dify。总体而言,FastGPT在大多数知识库场景中更简单高效,而Dify在技术要求高的项目中表现更强大。
原创
博文更新于 2025.06.29 ·
637 阅读 ·
5 点赞 ·
0 评论 ·
8 收藏

RagFlow 更适合企业级深度应用,FastGPT 更适合快速开发和原型验证

RagFlow与FastGPT开发对比摘要(150字) RagFlow定位企业级知识管理,擅长深度文档解析(OCR/表格/合同处理),需技术部署但数据私有;FastGPT侧重快速应用搭建,提供可视化工作流,适合个人开发者快速上线。关键差异:RagFlow在复杂文档处理(如医疗/法律文件)有优势,需API集成;FastGPT简化开发流程,支持拖拽式配置。选择建议:企业级需求选RagFlow,注重数据安全;小型项目/原型开发用FastGPT,实现快速迭代。两者可组合使用,原型阶段用FastGPT验证,正式部署切
原创
博文更新于 2025.06.29 ·
741 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

RagFlow 是一个基于深度文档理解构建的开源 RAG(Retrieval-Augmented Generation)引擎,是构建专业知识库问答系统的理想选择!

RagFlow:开源RAG引擎 GitHub最受欢迎RAG项目之一(58.5k星),提供企业级文档智能处理方案。核心优势: 1️⃣ 深度文档解析:支持PDF/Word/Excel等多格式,含OCR和表格识别 2️⃣ 智能分块:可视化分块策略,支持人工干预优化 3️⃣ 多模态支持:处理文本、图像、音频等多数据类型 4️⃣ 一键部署:Docker快速安装(完整版9GB/精简版2GB) 适用场景:企业知识库、智能分析、内容生成等。对比同类工具,RagFlow在文档解析精度和企业级支持上表现突出。 🔗 GitHu
原创
博文更新于 2025.06.29 ·
1016 阅读 ·
13 点赞 ·
0 评论 ·
5 收藏

Dify支持5种应用类型,每种都有其独特的应用场景和特点

Dify官方文档介绍了5种应用类型:1)聊天助手(Chatbot):支持多轮对话,适用于客服场景;2)文本生成:单次文本输出,适合翻译、写作;3)Agent:具备推理和工具调用能力,可处理复杂任务;4)Workflow:可视化流程编排,实现业务自动化;5)Chatflow:专为对话设计的流程,支持上下文管理。文档提供了类型对比表和新手选择建议,推荐从简单问答开始逐步进阶。不同类型适用于不同业务需求,开发者可根据场景灵活选择。
原创
博文更新于 2025.06.29 ·
1213 阅读 ·
6 点赞 ·
0 评论 ·
6 收藏

宝塔面板,一个非常适合Linux初学者和快速建站需求用户的服务器管理工具

宝塔面板是一款专为Linux/Windows服务器设计的图形化管理工具,由国内团队开发,大幅降低服务器运维门槛。主要功能包括:一键建站、数据库管理(MySQL/MongoDB等)、文件管理、软件安装(Nginx/PHP等)、系统监控等。提供免费版和专业版,适合个人开发者、中小企业快速部署网站和应用。优势在于全中文界面、操作简单、功能集成度高,特别推荐给不熟悉命令行的新手用户。安装仅需一行脚本,但需注意修改默认端口和密码以保障安全。相比cPanel等国外面板更符合国内用户习惯,是入门级服务器管理的理想选择。(
原创
博文更新于 2025.06.29 ·
1143 阅读 ·
8 点赞 ·
0 评论 ·
14 收藏

阿里有哪些开源模型,个人学习实用哪个好

这个选择既能让你充分体验大模型的能力,又不会对硬件造成过大压力,是个人学习的最佳起点!
原创
博文更新于 2025.06.29 ·
1035 阅读 ·
19 点赞 ·
0 评论 ·
10 收藏

大模型小模型选型手册:开源闭源、国内国外全方位对比

大模型与小模型汇总: 国内外分布: 国外:OpenAI(GPT系列)、Anthropic(Claude)、Google(Gemini)、Meta(Llama) 国内:阿里(Qwen)、深度求索(DeepSeek)、字节(Doubao)、腾讯(Hunyuan) 开源与闭源: 开源:Llama、Mistral、Qwen、DeepSeek 闭源:GPT-4、Claude、Gemini 适合个人的小模型(1B-7B): Qwen1.5B/7B(中文友好) Llama3-8B(通用性强) Mistral-7B(推理优
原创
博文更新于 2025.06.29 ·
3081 阅读 ·
9 点赞 ·
0 评论 ·
8 收藏

Ollama Windows 命令行完整指南

Ollama Windows 命令行使用指南提供了完整的本地AI模型管理方案。主要包含:1) 服务管理基础命令(serve/version/help);2) 模型操作(pull/run/list/rm);3) 高级功能(模型创建/API调用);4) 实用参数(temperature/ctx-size)。推荐从llama3.2、qwen2.5等热门模型入手,支持对话、代码生成、翻译等场景。文档还包含批量操作技巧和故障排查方法,帮助用户快速上手本地AI部署。
原创
博文更新于 2025.06.29 ·
922 阅读 ·
8 点赞 ·
0 评论 ·
7 收藏

AI大模型应用开发完整学习体系

《AI大模型应用开发完整学习体系》课程摘要: 本课程构建系统化的AI大模型开发能力培养体系,包含五大核心模块:1)基础架构与Prompt工程;2)向量数据库/RAG/LangChain等核心技术;3)低代码平台实战;4)算法竞赛进阶;5)全栈项目开发。课程深度覆盖Transformer架构、多模态交互、Agent系统等前沿技术,通过金融/医疗等行业案例实践,培养学员从0到1构建智能系统的能力。技术深化部分详细解析大模型架构选择、生产级RAG系统设计、多智能体协作框架等企业级解决方案,配套阿里云竞赛实战,助力
原创
博文更新于 2025.06.29 ·
758 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

n8n和dify有什么区别

摘要: n8n与Dify是两款定位不同的开源工具:n8n专注于工作流自动化,支持400+服务集成,适合非AI场景的业务流程优化;Dify则聚焦AI应用开发,提供LLM集成和对话设计能力,适合构建智能客服、内容生成等AI解决方案。技术层面,n8n部署简单(Node.js/Vue),Dify需更多资源(Python/React)。两者均免费开源,但Dify的云服务按Token计费。建议优先学习Dify(市场需求大、AI趋势),再掌握n8n作为补充,组合使用可形成“AI决策+流程自动化”的完整方案,尤其适合创业者
原创
博文更新于 2025.06.28 ·
661 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

MCP协议全解:大模型时代的能力开放与服务集成最佳实践

MCP协议(模型上下文协议)是大模型和多智能体生态中标准化上下文传递与能力集成的关键协议。它定义了用户输入、系统提示、外部知识、会话状态等结构化字段,支持JSON/Protobuf等序列化方式,实现模型间无缝协作。在应用层面,MCP可标准化企业通知能力(短信/邮件/钉钉),通过统一API接口、服务注册发现机制和认证体系(API Key/OAuth2),让智能客服、RPA流程等场景便捷调用多通道消息服务。该协议具有标准化、易扩展和生态互通优势,成为AI能力开放和多智能体协作的基础设施,推动企业服务智能化升级。
原创
博文更新于 2025.06.25 ·
1495 阅读 ·
20 点赞 ·
0 评论 ·
8 收藏

智能体平台的商业前景与竞争格局分析:金融与企业市场的机遇与挑战

金融机构与企业部署第三方智能体平台在数字化转型中具有现实需求与技术可行性。大模型技术成熟,平台产品支持多样化部署方式,金融、政企等行业存在明确应用场景。市场呈现多元化竞争格局,预计数万家企业将在未来2-3年采用此类平台。盈利模式包括订阅、私有化部署等,企业付费意愿取决于实际价值。相比传统定制软件,智能体平台更具灵活性,是企业智能化升级的重要方向。该商业模式具有发展潜力,但需注重解决行业痛点与安全合规要求。
原创
博文更新于 2025.06.25 ·
1409 阅读 ·
10 点赞 ·
0 评论 ·
18 收藏

深入理解提示词工程:原理、分类与实战应用

摘要:提示词工程是优化与大模型交互提示词的技术,包含系统提示词(定义AI角色)和用户提示词(用户指令)。核心内容包括字数限制、参考资料添加、多轮对话设计等。提示词可分类为零样本/小样本、不同任务类型及模块结构。系统提示词在每次请求时拼接生效,确保AI行为一致。未来发展将结合自然语言与编程。掌握提示词设计与调试是提升AI应用效果的关键。
原创
博文更新于 2025.06.25 ·
1574 阅读 ·
24 点赞 ·
0 评论 ·
10 收藏

AI大模型解决方案,学习总结

《AI大模型解决方案专家课程体系解析》系统梳理了当前大模型技术体系与应用实践。课程包含三大核心模块:理论基础部分涵盖大模型原理、Prompt工程、RAG技术、Embedding与向量数据库等技术要点;行业案例模块提供28+跨领域实战项目,包含RAG问答系统、智能客服等全链路开发;学习支持部分采用阶梯式教学,配套就业指导。技术补充分享了RAG工程化、Embedding选型等实用经验,建议学习者注重理论实践结合、关注技术前沿。该课程体系完整覆盖大模型开发全流程,适合具备编程基础、寻求AI落地的开发者参考学习,对
原创
博文更新于 2025.06.24 ·
845 阅读 ·
24 点赞 ·
0 评论 ·
24 收藏

《AI大模型应用技术开发工程师》学习总结

摘要: 《AI大模型应用技术开发工程师》课程系统讲解大模型核心技术,包含理论、实战与工程化应用。核心模块涵盖LLM原理、Prompt工程、RAG技术、向量数据库、Agent开发及微调方法,结合企业知识库、智能客服等实战项目。课程强调工程化落地,涉及API设计、性能优化等企业级需求,并提供就业指导与学习社群。建议学习者理论与实践结合,关注技术前沿,注重业务场景适配与工程能力培养。该课程适合具备编程基础、希望深入AI应用开发的从业者,需持续跟踪技术演进以实现技术价值转化。(149字) 注:严格控制在150字内,
原创
博文更新于 2025.06.24 ·
1106 阅读 ·
13 点赞 ·
0 评论 ·
20 收藏

《AI大模型核心技术揭秘与商业落地实战》学习内容系统总结

《AI大模型核心技术揭秘与商业落地实战》课程系统梳理了RAG技术、Embedding模型、向量数据库等核心技术,涵盖从理论到商业落地的全流程。课程通过LangGraph、ReAct Agent等工具实战演练,解析企业级RAG系统架构与优化策略,并配套面试指导服务。建议学员结合实战项目深化理解,重点关注工程化落地与性能优化。该课程适合AI开发者及企业技术团队,既能掌握前沿技术,又能提升商业场景的落地能力。
原创
博文更新于 2025.06.24 ·
805 阅读 ·
12 点赞 ·
0 评论 ·
7 收藏

大模型项目实战:业务场景和解决方案

本文全面梳理了18类主流AI大模型实战项目,涵盖智能问答、内容生成、语音助手、推荐系统等多领域。每个项目均给出核心功能、技术栈(如LangChain、Stable Diffusion、OpenAI API等)及实现路径,重点突出RAG、多模态、自动化等关键技术。文章特别指出智能问答、AI写作等低门槛项目适合快速落地,并强调向量数据库、Prompt工程等通用技术要素。最后建议根据实际需求选择技术组合,为开发者提供清晰的项目规划参考。(149字)
原创
博文更新于 2025.06.24 ·
1348 阅读 ·
20 点赞 ·
0 评论 ·
20 收藏

快速搭建系统原型,UI界面,有哪些高效的AI工具和方法

摘要:当前主流AI工具大幅提升系统原型和UI设计效率。设计端有Uizard、Figma AI等可自动生成高保真原型;开发侧GitHub Copilot等支持代码生成,Retool等低代码平台快速搭建功能。配套AI工具覆盖文案生成(Notion AI)、素材创作(DALL·E)、用户体验分析(Maze AI)全流程。建议采用"AI生成+低代码实现+快速验证"模式,通过工具链协同将产品迭代周期缩短70%以上。不同角色可根据需求组合使用这些智能工具实现高效创新。(150字)
原创
博文更新于 2025.06.24 ·
2041 阅读 ·
22 点赞 ·
0 评论 ·
14 收藏
加载更多