大模型.
码龄7年
求更新 关注
提问 私信
  • 博客:2,177,097
    学院:94
    视频:225
    2,177,416
    总访问量
  • 1,067
    原创
  • 704
    排名
  • 15,553
    粉丝
  • 36
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
加入CSDN时间: 2019-06-04

个人简介:取代你的不是AI,而是会使用AI的人 —— 埃隆·马斯克

博客简介:

EnjoyEDU的博客

博客描述:
取代你的不是AI,而是会使用AI的人 —— 埃隆·马斯克
查看详细资料
博客首页关于我们
个人成就
  • 获得22,369次点赞
  • 内容获得611次评论
  • 获得21,757次收藏
  • 代码片获得3,614次分享
  • 原力等级
    原力等级
    9
    原力分
    7,867
    本月获得
    330
创作历程
  • 791篇
    2025年
  • 238篇
    2024年
  • 27篇
    2023年
  • 12篇
    2022年
成就勋章
TA的推广
AGI大模型研究院
AGI大模型学习资料,视频课程、实战项目等 微信扫码即可领取:
20201019180705509.png#pic_center
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

36人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 资源
  • 代码仓
  • 问答
  • 帖子
更多
  • 最近

  • 文章

  • 专栏

  • 资源

  • 代码仓

  • 问答

  • 帖子

  • 社区

  • 视频

  • 课程

  • 收藏

搜索 取消

收藏!小白&程序员专属大模型学习路线图(从入门到实战全攻略)

如今技术圈降薪裁员频频爆发,传统岗位大批缩水,相反AI相关技术岗疯狂扩招,薪资逆势上涨150%,大厂老板们甚至开出70-100W年薪,挖掘AI大模型人才!技术的稀缺性,才是你「值钱」的关键!具备AI能力的程序员,比传统开发高出不止一截!有的人早就转行AI方向,拿到百万年薪!👇🏻👇🏻是不是也想抓住这次风口,但卡在 “入门无门”?小白:想学大模型,却分不清 LLM、微调、部署,不知道从哪下手?传统程序员:想转型,担心基础不够,找不到适配的学习路径?
原创
博文更新于 2 小时前 ·
441 阅读 ·
15 点赞 ·
0 评论 ·
8 收藏

收藏级干货!深入浅出 LLM:从实战使用到浅层原理

随着运营,想象力科技公司分析数据发现,有些用户是希望让AI做角色扮演,为了丰富用户玩法,想象力科技公司开发自定义AI角色,用户可以自定义对话角色,让AI扮演不同的角色,比如林黛玉客服、王熙凤销售、薛宝钗售后等等,让AI更加拟人化,更加贴近用户偏好。豆包的角色设定:alt text本质是Prompt定制,即提示词工程 Prompt Engineeringhttps://www.promptingguide.ai/zh,提示词工程在AI的实现过程可以起到很很大的作用。
原创
博文更新于 2 小时前 ·
446 阅读 ·
10 点赞 ·
0 评论 ·
3 收藏

【收藏】传统开发岗收缩?大模型工程师逆势涨薪150%,小白/程序员入门指南

如今技术圈降薪裁员频频爆发,传统岗位大批缩水,相反AI相关技术岗疯狂扩招,薪资逆势上涨150%,大厂老板们甚至开出70-100W年薪,挖掘AI大模型人才!技术的稀缺性,才是你「值钱」的关键!具备AI能力的程序员,比传统开发高出不止一截!有的人早就转行AI方向,拿到百万年薪!👇🏻👇🏻是不是也想抓住这次风口,但卡在 “入门无门”?小白:想学大模型,却分不清 LLM、微调、部署,不知道从哪下手?传统程序员:想转型,担心基础不够,找不到适配的学习路径?
原创
博文更新于 2 小时前 ·
502 阅读 ·
9 点赞 ·
0 评论 ·
2 收藏

【必收藏】Hybrid-RRF:大语言模型混合检索技术全面解析,有效解决AI幻觉问题

文章介绍了一种名为Hybrid-RRF的混合检索技术,用于解决大语言模型的"幻觉"问题。该技术创新性地融合了传统稀疏检索(BM25)和现代稠密检索(Sentence Transformers)的优势,通过查询扩展、动态权重调节和互逆排序融合三个阶段,根据查询特性自动优化检索策略。实验表明,这种方法在专业领域表现出色,将幻觉率降低到传统方法的1/3以下,检索精度提升17%以上,特别适合医疗、金融等专业领域的应用。
原创
博文更新于 2 小时前 ·
167 阅读 ·
6 点赞 ·
0 评论 ·
15 收藏

【收藏向】AI大模型系统学习路线:从入门到进阶,小白&程序员必看指南

对于想要入门AI大模型领域的小白,或是希望转型深耕的程序员来说,一套清晰、系统的学习路线至关重要。本文整理了从基础铺垫到进阶应用的完整大模型学习体系,每个阶段都搭配了经典书籍、优质课程、实战项目,还补充了社区交流与持续学习的核心资源,帮你避开学习误区,循序渐进构建知识框架,最终成长为AI大模型领域的实战型专家。
原创
博文更新于 昨天 10:19 ·
254 阅读 ·
9 点赞 ·
0 评论 ·
6 收藏

让模型听话不再难:完整Prompt工程指南,从入门到精通,建议收藏!

你在写prompt时候,是不是总觉得大模型它不听话。要么答非所问、要么一堆废话。扒开思考过程仔细阅读时而觉得它聪明绝顶,时而又觉得它愚蠢至极。明明已经对了怎么又推理到错的地方去了,明明在提示词中提醒过了不要这么思考它怎么就瞎想了。这也许就是每一个Prompt Engineer的困扰。怎么能让模型按照要求去思考。长提示词到底应该怎么写,有没有方法可以一次命中,找到那个终极的提示词。答案是否定的,一篇成功的长提示词总是要经历初始版本、调优、测试、再调优。不过这个过程中有规律可循,有方法可套。
原创
博文更新于 昨天 10:17 ·
503 阅读 ·
15 点赞 ·
0 评论 ·
15 收藏

收藏!从零到实战:30天AI大模型系统学习指南(小白/程序员专属)

人工智能大模型(Large Language Models, LLMs)已然成为当下科技领域的核心风口。从ChatGPT的横空出世引爆行业,到LLaMA、Qwen等开源模型的百花齐放,掌握大模型相关技术,早已成为技术人突破职业瓶颈、提升核心竞争力的关键抓手。但大模型涉及的知识体系繁杂庞大,从理论架构到工程实践跨度极大,让不少初学者望而却步。为此,本文整理了一份雄心勃勃却完全可落地的30天学习计划:帮你快速搭建AI大模型的系统性认知框架,从零上手并具备独立的动手实践与应用开发能力,轻松跟上大模型时代的步伐。
原创
博文更新于 昨天 10:16 ·
607 阅读 ·
7 点赞 ·
0 评论 ·
11 收藏

【程序员必藏】深入浅出:大语言模型核心原理解析(GPT/生成式/预训练/Transformer)

GPT 对应的是三个关键概念:生成式(Generative)、预训练(Pre-Training)和Transformer。生成式(Generative):是指通过学习历史数据来生成全新的数据。当使用ChatGPT回答问题时,是逐字(或三四个字符一起)生成的。在生成过程中,每一个字(或词,在英文中可能是词根)都可以被称作一个 token。预训练(Pre-Training):是指预先训练模型。
原创
博文更新于 昨天 10:13 ·
467 阅读 ·
17 点赞 ·
0 评论 ·
8 收藏

收藏!AI大模型应用开发进阶指南,2026高薪赛道抢先入局

攒项目经验:把前面做的小工具优化升级,比如把“简历优化工具”改成“一站式求职助手”(包含简历优化、面试题生成、模拟面试功能),放到GitHub上,配上详细文档,这比任何证书都有用。参加技术比赛:Kaggle、阿里云天池、百度飞桨的大模型赛道都值得参加,拿不拿奖不重要,重要的是能接触到真实业务场景,还能认识同行和行业大佬。输出技术内容:在CSDN、知乎分享你的学习心得和项目复盘,比如“用LangChain开发RAG系统的踩坑记录”,既能加深理解,又能提升个人影响力,很多HR会主动找上门。
原创
博文更新于 前天 10:28 ·
752 阅读 ·
27 点赞 ·
0 评论 ·
18 收藏

【干货收藏】大模型对齐三大神器:PPO、DPO与GRPO算法全解析,小白也能轻松掌握!

文章详解了大模型对齐中的三大关键算法:PPO通过强化学习和奖励模型指导模型优化;DPO简化流程,直接基于人类偏好数据训练模型;GRPO作为PPO的改进版,通过组内比较提高效率。这些算法帮助大模型生成更符合人类偏好的文本,与链式思考结合可提升复杂推理能力,使模型更可靠、更有用。
原创
博文更新于 前天 10:25 ·
654 阅读 ·
11 点赞 ·
0 评论 ·
13 收藏

【必收藏】从零开始构建工业级Text2SQL系统:大模型应用开发实战指南

Text2SQL 从来不是一个“炫技方向”。它是一个非常工程、非常务实、非常容易踩坑的系统。模型只是其中最简单的一环。Schema 设计能力Prompt 约束能力系统防御意识结果解释能力如果你能把这套逻辑讲清楚,Text2SQL 不只是一个功能点,而是一个非常好的工程能力证明。
原创
博文更新于 前天 10:22 ·
469 阅读 ·
19 点赞 ·
0 评论 ·
10 收藏

2025最新大模型学习路线(附全套资源),小白速藏!

在2025年的AI技术圈,大模型早已不是“小众黑科技”,而是渗透到智能客服、代码生成、数据分析等各行各业的核心驱动力。无论是想转行入局的技术小白,还是希望拓展技能边界的程序员,都绕不开“如何系统学大模型”这个问题——有人被繁杂的术语吓退,有人陷入“学了理论不会落地”的困境,更有人找不到适配2025技术趋势的学习方向。别慌!今天就为大家带来一份2025最新版大模型系统化学习路线,从零基础到项目部署全流程覆盖,更打包了经典PDF、实战视频、面试题库等全套资源,帮你少走90%的弯路,高效入门大模型应用开发。
原创
博文更新于 前天 10:20 ·
625 阅读 ·
25 点赞 ·
0 评论 ·
15 收藏

建议收藏 | 大模型量化入门:从FP16到int4,性能为何几乎不变?一篇文章讲透

文章解释了大语言模型量化后性能仍能保持的原因:大模型权重呈近似正态分布且高度集中,Transformer结构对微小扰动不敏感;现代量化采用分组量化、激活重标定等技巧有效控制误差;通过混合精度和微调补偿量化噪声,使得低比特量化在计算效率和性能间取得平衡,int8几乎无损,int4仅略微下降1-2%。在大语言模型(LLM)中,模型参数通常以精度存储。
原创
博文更新于 前天 10:19 ·
866 阅读 ·
20 点赞 ·
0 评论 ·
15 收藏

大模型 AI Agent 科研从入门到精通:完整路线图

简单来说,AI Agent是一个能“自己动脑干活”的AI系统。🎯 自主规划:能将复杂目标拆解为可执行步骤🔧 工具使用:能调用搜索引擎、计算器、API等外部工具💾 记忆能力:拥有短期和长期记忆,能在多轮交互中保持连续性🤔 推理决策:基于大语言模型的强大推理能力进行判断比如,你让AI Agent“帮我整理这个领域的最新研究进展”,它会自动搜索相关论文、提取关键信息、生成综述报告,整个过程无需人工干预。核心资源:李宏毅教授相关公开课学习目标:掌握 Agent "工作记忆"的设计艺术。
原创
博文更新于 2025.12.17 ·
1100 阅读 ·
27 点赞 ·
0 评论 ·
18 收藏

收藏备用!AI大模型浪潮下,产品经理的破局与成长指南

在代码与数据交织的科技新纪元,我们正亲历一场由人工智能(AI)引领的产业变革。从实验室的算法迭代到日常的智能交互,AI早已跳出概念范畴,而其中的爆发式增长,更是成为撬动未来的核心支点。对于身处技术前沿的程序员、刚入行的IT小白,以及需要衔接技术与市场的产品经理而言,看懂大模型、用好大模型,已不是“加分项”而是“必修课”。随着GPU算力的指数级提升与Transformer架构的持续优化,AI大模型凭借数十亿甚至万亿级的参数量,完成了从“执行工具”到“智能伙伴”的蜕变。
原创
博文更新于 2025.12.17 ·
726 阅读 ·
13 点赞 ·
0 评论 ·
20 收藏

收藏必备!LangChain新定位揭秘:Agent基础设施提供商与三层开发架构详解

文章介绍了LangChain的新定位和Agent开发的三层架构:Framework框架层解决"怎么写",Runtime运行时解决"怎么跑",Harness基座提供开箱即用方案解决"怎么用"。文章强调Agent开发工程化成熟度快速提升,未来将形成"开放基座生态系统",让开发者能快速构建并迭代Agent应用,AI工程的黄金时代刚刚开始。LangChain拿到了新融资,对自己有了新定位——Agent基础设施提供商,同时对自己的产品矩阵做了新的梳理,重新定义了Agent开发的三个层次。:提供抽象和标准化接口。
原创
博文更新于 2025.12.17 ·
326 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

收藏!AI智能体开发入门指南:从Python到多智能体的系统化学习路径

在AI技术一日千里的当下,智能体(Agent)与模型上下文协议(MCP)已然成为AI应用落地的核心抓手。但不少刚入门的程序员和技术小白,常会陷入"先啃智能体还是先攻MCP"的迷茫——明明资源堆了一堆,却始终找不到高效的切入点。这篇文章专为AI开发初学者打造,不仅梳理了一条逻辑清晰、可落地的学习路线,还补充了实战避坑技巧与工具推荐,帮你从零搭建AI智能体开发能力体系,避开新手常踩的"无效学习"陷阱。
原创
博文更新于 2025.12.17 ·
974 阅读 ·
20 点赞 ·
0 评论 ·
20 收藏

【收藏级干货】大型语言模型训练核心:预训练-对齐的强大与极限解析

而且不需要所有的角色都有多种版本的介绍,只要训练资料里面有一部分角色有多种版本的介绍,就足以让模型学到更泛用的知识,强化模型理解的能力。现在一个好的预训练模型,都需要大量的资料。LLaMA 3 用了 15T (兆) 个 Token。这个资料量多到已经有人担心,会不会网络上所有可以取得的资料,已经要被用尽了。有篇论文估测,大概在 2028 到 2030 年,我们就会用尽网络上所有能够训练的 Token。不过你可能会想,我上哪里去找 15T 的资料呢?
原创
博文更新于 2025.12.17 ·
827 阅读 ·
30 点赞 ·
0 评论 ·
13 收藏

【必藏】AI大模型全景分析:程序员&小白入门全指南,读这篇就够了

大模型指参数量超10亿、具备跨任务泛化能力的深度学习模型(如NLP、CV、多模态),通过海量数据训练实现复杂任务处理。
原创
博文更新于 2025.12.16 ·
936 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏

必藏!2025大模型学习全攻略,从入门到进阶的程序员成长路径

当下,人工智能的浪潮正以前所未有的力度席卷全球,而大模型无疑是这股浪潮的核心引擎。从我们日常依赖的智能客服、语音助手,到企业级的智能数据分析、自动化代码生成,再到医疗诊断辅助、个性化教育等专业领域,大模型的应用场景不断突破边界,成为驱动产业升级的关键力量。这一领域的爆发式发展,也让无数程序员、技术小白心生向往,渴望跻身其中,抢占职业发展的新风口。但理想与现实之间往往存在差距。大模型领域不仅知识体系庞大繁杂,技术迭代速度更是快到让人眼花缭乱——今天刚弄懂的模型架构,明天可能就有了优化版本;
原创
博文更新于 2025.12.16 ·
823 阅读 ·
22 点赞 ·
0 评论 ·
11 收藏
加载更多