AI何哥
码龄10年
求更新 关注
提问 私信
  • 博客:1,726,979
    社区:1
    1,726,980
    总访问量
  • 317
    原创
  • 24,669
    粉丝
  • 24
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:贵州省
加入CSDN时间: 2015-07-26

个人简介:从事AI大模型、大数据治理、政务信息化等行业领域。(WX公众号同名欢迎同步关注)

博客简介:

何哥的博客

查看详细资料
个人成就
  • 领域专家: 后端开发技术领域
  • 获得2,358次点赞
  • 内容获得226次评论
  • 获得9,290次收藏
  • 代码片获得39,091次分享
  • 博客总排名26,987名
  • 原力等级
    原力等级
    9
    原力分
    7,483
    本月获得
    6
创作历程
  • 36篇
    2025年
  • 14篇
    2024年
  • 44篇
    2023年
  • 18篇
    2022年
  • 72篇
    2021年
  • 21篇
    2020年
  • 71篇
    2019年
  • 19篇
    2018年
  • 25篇
    2017年
  • 1篇
    2016年
  • 9篇
    2015年
成就勋章
TA的专栏
  • AI大模型
    35篇
  • 大数据治理
    19篇
  • 架构设计
    23篇
  • Spring Cloud Alibaba
    15篇
  • Java后端开发
    58篇
  • Java基础
    58篇
  • 消息队列
    7篇
  • MySQL
    19篇
  • Redis
    14篇
  • 数据结构与算法
    34篇
  • Linux运维
    16篇
  • Android
    19篇
  • 大前端
    3篇
  • Python数据挖掘
    2篇

TA关注的专栏 3

TA关注的收藏夹 0

TA关注的社区 5

TA参与的活动 0

兴趣领域 设置
  • 大数据
    elasticsearchflinkneo4j
  • 后端
    架构分布式
  • 人工智能
    YOLO
  • AIGC
    embedding
欢迎关注我
  • 欢迎各位关注「AI何哥」公众号
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

34人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

一文读懂RAG检索增强生成

大模型(Large Language Model,LLM)的浪潮已经席卷了几乎各行业,但当涉及到专业场景或行业细分领域时,通用大模型往往面临专业知识不足的问题。相对于成本昂贵的“Post-Training”或“Supervised Fine-Tuning”(监督微调,SFT),基于RAG的技术方案成为了一种更优选择。RAG技术标志着大模型应用从「依赖预训练知识」转向「动态知识融合」,成为企业AI落地的核心架构。掌握RAG不仅需要理解技术原理,更要在实战中不断调优分块策略、检索算法和生成提示。
原创
博文更新于 2025.09.03 ·
989 阅读 ·
12 点赞 ·
0 评论 ·
9 收藏

PaddleOCR图片文字提取

摘要:百度开源的PaddleOCR 3.0是一款功能强大的OCR工具包,支持80多种语言识别,包括中文手写体和复杂版面。其核心优势在于全流程OCR解决方案、轻量级模型设计和丰富的预训练模型。用户可通过可执行程序、Python API或源码编译三种方式使用,适用于从日常办公到企业开发的多场景需求。PaddleOCR 3.0新增五大文字类型识别、文档高精度解析和智能文档理解三大能力,识别精度较上代提升13%,已成为开源OCR领域的首选工具。
原创
博文更新于 2025.07.21 ·
3368 阅读 ·
9 点赞 ·
0 评论 ·
21 收藏

向量数据库系列2:开源向量数据库Milvus

在执行查询时,面向列的数据库只读取查询中涉及的特定字段,而不是整行,这大大减少了访问的数据量。此外,对基于列的数据的操作可以很容易地进行向量化,从而可以一次性在整个列中应用操作,进一步提高性能。Milvus 是一个开源的、高性能、高扩展性的向量数据库,专门用于处理和检索高维向量数据。它支持多种数据类型,适用于不同的属性模型,包括常见的数字和字符类型、各种向量类型、数组、集合和 JSON,为您节省了维护多个数据库系统的精力。此外,Milvus 的各个组件都有很好的解耦,其中最关键的三项任务--
原创
博文更新于 2025.07.02 ·
2933 阅读 ·
32 点赞 ·
0 评论 ·
23 收藏

Dify工作流节点总结

Dify工作流模式通过节点化设计降低LLM开发复杂度,提升系统稳定性。工作流包含六大类20种节点:核心类(如LLM节点、知识检索)、问题理解类(问题分类)、逻辑类(条件分支、循环)、转化类(代码执行、模板转换)、工具类(HTTP请求)及其他辅助功能。每个节点执行特定任务,通过灵活组合可构建复杂应用流程,增强可解释性和容错性。该设计显著降低了开发者使用大语言模型的技术门槛,适用于文本生成、数据处理等多种AI场景。
原创
博文更新于 2025.06.27 ·
3082 阅读 ·
14 点赞 ·
0 评论 ·
38 收藏

一文读懂MCP模型上下文协议

MCP(Model Context Protocol) 是一种由 Anthropic (Claude 大模型母公司)于 2024 年 11 月发布的开源协议,旨在标准化大型语言模型(LLM)与外部数据源和工具的交互。它像“AI的USB-C接口”,通过统一接口让 AI 模型无缝连接数据库、文件、API 等外部资源。MCP 通过客户端-服务器架构(MCP Client 和 MCP Server)实现,广泛应用于 AI 助手、开发工具等场景,助力构建更智能、互联的 AI 应用。
原创
博文更新于 2025.06.23 ·
1490 阅读 ·
15 点赞 ·
0 评论 ·
17 收藏

SpringAI系列4: Tool Calling 工具调用

Spring AI 中的工具调用使 AI 模型能够与外部工具和服务交互,从而增强其功能。Tool Calling 工具调用允许 AI 模型执行外部函数、访问外部服务、执行复杂操作和与现有系统集成主要使用的场景:信息检索(Information Retrieval)。此类工具可用于从外部资源(如数据库、Web服务、文件系统或者 WEB 搜索引擎)检索信息。目标:增强模型的知识,使其能够回答其其它方式不能回答的问题。例如,工具用于检索给定的位置天气、检索最新的新闻文章或者查询数据库。
原创
博文更新于 2025.06.22 ·
2557 阅读 ·
16 点赞 ·
0 评论 ·
22 收藏

DeepSeek核心技术总结

DeepSeek技术解析:大模型研发与微调实践 DeepSeek在2024-2025年相继发布了V3和R1两大模型版本:V3采用MoE架构实现高效推理(对标GPT-4o),R1强化推理能力(对标o1)。其核心技术包括: 高效架构:MoE技术动态激活专家模块,降低67B参数模型的显存消耗 优化方案:MLA注意力压缩、分布式训练优化(MFU达34.7%) 微调生态:LLaMA-Factory框架支持LoRA/QLoRA等多种高效微调方法 技术体系涵盖: 预训练:自监督学习构建基础能力 微调:全参/部分参数调整适
原创
博文更新于 2025.06.22 ·
6815 阅读 ·
12 点赞 ·
0 评论 ·
32 收藏

Spring AI Alibaba框架简介

SpringAIAlibaba 1.0正式发布:阿里云生态AI开发新框架 摘要:2025年6月13日,SpringAIAlibaba发布首个GA版本1.0.0.2,标志着Java智能体开发进入新时代。该框架基于SpringAI构建,深度集成阿里云服务(如通义千问、OSS等),提供三大核心能力:1)Graph多智能体框架,支持工作流和多智能体应用开发;2)企业级AI生态集成,包含百炼平台、可观测性工具等;3)自主规划的通用智能体JManus。新版本支持ChatBot、Workflow和Multi-agent开
原创
博文更新于 2025.06.20 ·
1678 阅读 ·
22 点赞 ·
0 评论 ·
30 收藏

基于LangChain4j框架构建RAG系统

摘要:本文介绍了如何利用LangChain4j框架在Java环境中构建本地RAG(检索增强生成)问答系统。针对大型语言模型(LLM)知识更新滞后和无法访问私有数据的问题,通过集成Chroma向量数据库实现知识存储与检索。系统实现步骤包括:1)文档加载与分割处理;2)文本向量化存储;3)语义检索相似内容;4)结合检索结果生成回答。测试表明,该系统能有效结合本地知识库和LLM的生成能力,解决了模型时效性和数据隐私问题。文中详细展示了关键代码实现,包括文档处理、向量化存储和Prompt模板设计等核心环节,为Jav
原创
博文更新于 2025.06.19 ·
1305 阅读 ·
18 点赞 ·
0 评论 ·
30 收藏

一文读懂大模型召回机制和chunk

本文系统介绍了大模型召回机制及相关技术要点。主要内容包括: 召回定义与应用:在RAG架构中通过向量检索从知识库获取相关文本块(chunk)以补充模型知识,应用于问答、语义搜索等场景; 关键技术要素:涵盖Embedding模型、chunk切分策略(100-500 tokens)、向量数据库(FAISS等)及评估指标(Recall@K); 上下文窗口对比:列举主流模型(如GPT-4达32K、Gemini 1.5Pro支持2M tokens)的处理能力; 优化方法:采用混合召回策略、滑动窗口切分及高质量Embed
原创
博文更新于 2025.06.16 ·
2912 阅读 ·
15 点赞 ·
0 评论 ·
20 收藏

向量数据库系列1:一文读懂向量数据库

向量数据库(Vector Database)是一种专门用于存储、管理和查询高维向量数据的数据库系统。随着人工智能(尤其是深度学习和自然语言处理)的快速发展,向量数据库成为处理非结构化数据(如图像、文本、音频等)的核心工具,广泛应用于相似性搜索、推荐系统、语义分析等场景。
原创
博文更新于 2025.06.15 ·
1723 阅读 ·
29 点赞 ·
0 评论 ·
33 收藏

LangChain框架:AI应用开发利器

LangChain是一个简化大型语言模型(LLM)应用开发的框架,提供组件化工具链和标准化接口。其核心包括:LLM封装、提示模板、索引检索、任务链和代理系统,支持将语言模型与外部数据源和API连接。主要特点涵盖提示优化、任务链构建、数据增强生成、智能代理、状态管理和模型评估。应用场景广泛,如个人助手、学习辅助、数据分析、文档问答和聊天机器人等。通过LangChain,开发者可以更高效地构建结合私有数据和外部服务的智能应用。
原创
博文更新于 2025.06.15 ·
1223 阅读 ·
21 点赞 ·
0 评论 ·
17 收藏

Paraformer语音识别-中文-通用-16k-离线-large-长音频版

摘要: Paraformer-large是由阿里巴巴达摩院开发的非自回归端到端语音识别模型,支持长音频(数小时)的VAD、ASR、标点与时间戳功能,适用于语音输入法、会议纪要等场景。其核心包括Predictor模块(基于CIF准确预测文字个数)和双向Decoder(增强上下文建模),在中文公开数据集上达到SOTA效果。用户可通过ModelScope进行推理,支持多种音频输入格式(如wav、pcm、url等),并可自由组合VAD/PUNC模型。相比FunAudioLLM(通义实验室研发,侧重多模态与情感识别)
原创
博文更新于 2025.06.12 ·
2611 阅读 ·
21 点赞 ·
0 评论 ·
10 收藏

阿里云开源音频基座大模型 FunAudioLLM=SenseVoice+CosyVoice

阿里通义实验室开源音频基座大模型FunAudioLLM,包含SenseVoice和CosyVoice两大模型。SenseVoice支持50+种语言识别,中文准确率提升50%,兼具情感辨识和环境音检测;CosyVoice可实现3-10秒音色克隆,支持中英日粤韩五语种合成和情感语音控制。该模型在语音翻译、情感对话、互动播客和有声读物等场景表现优异,其在线体验显示生成语音自然流畅,超越ChatTTS等竞品。目前用户可通过魔搭社区体验多语言音频生成功能。
原创
博文更新于 2025.06.12 ·
1559 阅读 ·
12 点赞 ·
0 评论 ·
33 收藏

ChatTTS震撼上线:支持笑声与停顿控制的高质量语音合成模型

ChatTTS是一款专为对话场景设计的开源语音合成工具,以其自然流畅的韵律和灵活的细粒度控制能力引发关注。该模型支持中英文混读,可自由调节音色,并能通过简单标记插入笑声、停顿等情感表达,效果接近真人对话。ChatTTS在自媒体、电商直播、在线教育等领域具有广泛应用前景,但30秒以上音频生成仍存在不稳定性。开发者强调需遵守伦理规范,开源版本已内置安全防护措施。目前提供4万小时训练模型,用户可通过GitHub或官网Demo体验这一突破性的语音合成技术。
转载
博文更新于 2025.06.12 ·
1003 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Spring AI 中 ChatClient常用方法

摘要: ChatClient是SpringAI中简化AI交互的API组件,支持Deepseek、Qwen等主流模型。通过链式调用整合提示词管理、流式响应处理等功能,核心优势包括: 功能封装:自动拼接系统/用户提示,支持温度、Token数等参数配置; 多模态扩展:可处理图像/音频输入(需模型支持); 执行方式:提供同步(call())、流式(stream())及结构化解析(entity())三种响应模式; 记忆管理:通过withMemory()绑定历史会话上下文。典型应用如技术咨询场景:通过defaultSy
原创
博文更新于 2025.06.12 ·
2519 阅读 ·
19 点赞 ·
1 评论 ·
25 收藏

Project Reactor响应式编程简介

Reactor是一种事件驱动的高性能网络编程模型,其核心是发布-订阅机制。发布者(Publisher)如Flux/Mono提供数据流,订阅者(Subscriber)通过回调接收数据(onNext)、异常(onError)或完成信号(onComplete)。订阅(Subscription)连接两者并支持背压控制,让消费者能调节数据接收速度。数据从生产者流向消费者,构建异步非阻塞的数据流。典型流程包括:订阅建立→请求数据→数据发射→完成/错误处理。理解冷热流、背压等概念对设计响应式系统至关重要,是Spring
原创
博文更新于 2025.06.11 ·
1325 阅读 ·
17 点赞 ·
0 评论 ·
6 收藏

一文读懂WebFlux框架和WebClient响应式http客户端

摘要:Spring WebFlux是Spring 5引入的响应式Web框架,基于Reactive Streams规范。WebClient是其提供的非阻塞HTTP客户端工具,适用于高并发场景。相比传统RestTemplate,WebClient采用非阻塞IO模型,支持异步/同步请求,通过Mono和Flux处理响应数据。文章详细介绍了WebClient的API使用,包括创建实例、请求构建、响应处理(retrieve/exchange方法对比)、过滤器配置等,并分析了直接返回Flux与调用subscribe的区别
原创
博文更新于 2025.06.11 ·
3495 阅读 ·
27 点赞 ·
0 评论 ·
41 收藏

Spring AI框架快速入门

SpringAI 1.0正式发布:简化Java应用AI集成 SpringAI 1.0于2025年5月20日正式发布,标志着Spring生态全面拥抱人工智能技术。该项目旨在简化生成式AI在Java应用中的集成,提供统一API支持主流大模型(如GPT、Gemini等)和向量数据库(如Pinecone、Milvus)。 核心特性包括:1)标准化API抽象,实现供应商无关的模型调用;2)简化RAG等复杂场景开发,内置ETL框架和向量存储组件;3)深度集成SpringBoot,支持自动配置和响应式编程。开发者可通过C
原创
博文更新于 2025.06.11 ·
1461 阅读 ·
23 点赞 ·
0 评论 ·
12 收藏

OpenAI 聊天补全生成接口规范

OpenAI 提供的聊天补全生成接口(Chat Completion API)是其用于多轮对话生成的核心 API 之一,广泛应用于 GPT-3.5 和 GPT-4 等模型。以下是该接口的详细规范,基于 OpenAI 官方文档整理。
原创
博文更新于 2025.06.10 ·
2376 阅读 ·
21 点赞 ·
0 评论 ·
10 收藏
加载更多