大模型本地部署_
码龄5年
求更新 关注
提问 私信
  • 博客:2,040,067
    社区:117
    视频:744
    2,040,928
    总访问量
  • 1,398
    原创
  • 670
    排名
  • 12,857
    粉丝
  • 101
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
加入CSDN时间: 2020-08-11
博客简介:

Androiddddd的博客

查看详细资料
个人成就
  • 获得22,635次点赞
  • 内容获得1,376次评论
  • 获得25,914次收藏
  • 代码片获得3,622次分享
  • 原力等级
    原力等级
    9
    原力分
    9,164
    本月获得
    297
创作历程
  • 701篇
    2025年
  • 408篇
    2024年
  • 116篇
    2023年
  • 76篇
    2022年
  • 60篇
    2021年
  • 48篇
    2020年
成就勋章
TA的专栏
  • android
    164篇
  • android面试
    55篇
  • Android进阶
    77篇
  • 程序人生
    54篇
  • 程序员
    65篇
  • 音视频开发
    2篇
  • Jetpack
    24篇
  • 性能优化
    14篇
  • kotlin
    25篇
  • Android framework
    9篇
  • 车载系统
    6篇
  • 代码重构
    2篇
  • 面试
    4篇
  • Flutter
    1篇
  • 组件化
    1篇
  • 计算机网络
    1篇
  • 校招
    3篇
  • webview
    1篇
  • 高级UI
    4篇
  • 字节跳动
    1篇
  • 数据库操作
    1篇
  • android 
    17篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 3

TA参与的活动 0

兴趣领域 设置
  • 软件工程
    性能优化
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

30人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

震惊!多模态大模型对齐技术路线大揭秘!从CLIP到Qwen3-Omni,AI开发者的进阶宝典!

多模态大模型演进呈现三条技术路线:CLIP对比学习构建跨模态表征底座;组装式对齐融合预训练模型实现多模态理解;Data Agent系统通过自监督数据飞轮实现自主进化。从"表征对齐"到"行为协同",多模态智能正迈向通用人工智能,Qwen3-Omni等模型已能实时处理文本、图像、音频等多模态输入,标志着AI技术的重要突破。
原创
博文更新于 20 小时前 ·
430 阅读 ·
8 点赞 ·
0 评论 ·
15 收藏

《大模型上下文管理yyds!CAMEL团队揭秘:如何让AI智能体不再“内卷“token消耗》

文章探讨了AI智能体上下文工程中的关键问题:长对话历史导致的token消耗和认知负担。CAMEL团队提出三种解决方案:上下文摘要压缩冗余信息,工作流记忆记录解决经验供未来参考,工具输出缓存将大型结果存储到外部。这些技术能在不升级硬件的情况下提升LLM性能,但需平衡效率与准确性,避免信息丢失。开源社区可通过贡献代码共同完善这些技术。
原创
博文更新于 21 小时前 ·
469 阅读 ·
23 点赞 ·
0 评论 ·
11 收藏

你的AI Agent为何总像“临时工“?Anthropic&Letta联手揭秘技能革命,让AI变身“老员工“!

AI Agent在实际应用中表现不稳定,像"临时工"般不可靠。问题在于过去构建的Agent只有"大脑"没有"技能",无法复用经验。Anthropic提出的Skills作为可插拔能力包解决了上下文膨胀和稳定性问题,Letta进一步实现了Skill Learning,让Agent能从经验中学习并生成新技能,任务成功率提升30%以上。技能化是让AI Agent接近现实世界、实现自我成长的关键,虽面临挑战,但代表了未来发展方向。
原创
博文更新于 21 小时前 ·
326 阅读 ·
9 点赞 ·
0 评论 ·
7 收藏

【爆肝】大模型+图神经网络=未来?三篇顶会论文解锁AI跨场景适配新范式,代码已开源,速来学习!

文章介绍了三种图神经网络跨场景适配技术:OFA框架通过文本属性图和目标节点子图实现跨任务统一建模;TLG方法优化图结构到文本的编码适配,提升大模型图推理性能;WDNO利用小波变换实现跨分辨率物理模拟,解决突变建模和分辨率泛化难题。这些技术为GNN多场景应用提供新思路,推动图学习向通用AI发展。
原创
博文更新于 昨天 09:15 ·
477 阅读 ·
19 点赞 ·
0 评论 ·
18 收藏

【AI安全】大模型越狱技术HaPLa来袭,开发者如何应对这场“安全地震“?

文章介绍了一种名为HaPLa的新型大模型越狱攻击框架,通过"溯因框架+符号编码"双策略协同,成功绕过现有安全防护机制。实验显示该攻击对主流LLM(包括GPT-4)成功率高达95%,揭示了大模型在"隐性有害推理"面前的安全漏洞。研究指出,当前大模型安全防护存在"有用性"与"安全性"的强耦合矛盾,单纯依靠关键词过滤难以有效防御,未来需开发能识别恶意推理意图同时保留良性推理能力的智能防御机制。
原创
博文更新于 前天 12:30 ·
1213 阅读 ·
21 点赞 ·
0 评论 ·
21 收藏

AI翻车现场!大模型的“六脉神剑“式局限性,小白程序员避坑指南

本文系统剖析了大语言模型的六大核心局限性:模型幻觉(数学上无法根除)、上下文局限(有效使用受限)、推理能力缺陷(本质是"填空机器")、查询脆弱性(RAG系统的Relevance-Coverage困境)、多模态问题(文本主导地位)以及Benchmark局限(数据污染与评估缺陷)。文章指出这些局限性部分源于模型架构和训练机制,需要新型范式才能根本解决,同时提出了如PAL、CoVe等提升推理能力的实用方法,为开发者提供避坑思路。
原创
博文更新于 前天 11:15 ·
710 阅读 ·
24 点赞 ·
0 评论 ·
10 收藏

震惊!10刀+几个晚上,代码小白用Claude搭建保险多Agent架构,大佬直呼内行!

代码小白通过对话Claude明确需求,AI自动生成代码和知识,仅需几晚测试修改和10美元成本,成功搭建保险多Agent架构。实验达成预期,对保险大模型应用场景和实现路径有了深入理解,下一步将采用新实现路径提升复杂度,展现更惊艳效果。
原创
博文更新于 前天 10:50 ·
522 阅读 ·
6 点赞 ·
0 评论 ·
12 收藏

【代码级解析】BLIP-3如何让AI看清世界?Any-Resolution技术详解,附开源代码,小白程序员也能秒懂!

BLIP-3(xGen-MM)通过Any-Resolution Vision Token Sampling技术突破传统视觉-语言模型的分辨率限制。该技术结合图像分块编码和可扩展的Perceiver Resampler,实现任意分辨率图像的高效处理,同时保留细节信息。其核心架构包括视觉编码器、视觉Token采样器和大型语言模型三部分,通过Cross Attention机制实现视觉信息的压缩与融合,使模型在处理高分辨率图像时既保持高效率又实现深度理解。
原创
博文更新于 前天 10:50 ·
544 阅读 ·
11 点赞 ·
0 评论 ·
10 收藏

Anthropic新协议MCP竟让大模型“万物皆可插“,小白程序员5分钟掌握AI开发神器!

本文详解Anthropic推出的MCP协议,作为连接大模型与外部资源的"万能接口"。文章解析MCP架构组成、与RAG和Function Calling的关系,深入讲解资源、工具和提示词三大核心功能,并通过DW-DBA-MCP实战项目展示如何快速开发MCP服务,帮助开发者构建高效、安全的AI应用生态,实现大模型与异构资源的无缝集成。在浅析 MCP 原理之前,有必要搞清楚两个问题:**MCP 是什么?为什么会出现?**以此明晰它存在的价值和意义。首先,MCP(Model Context Protocol,模型上
原创
博文更新于 前天 10:49 ·
898 阅读 ·
16 点赞 ·
0 评论 ·
13 收藏

DeepMind黑科技Flamingo:用0.01%代码量实现AI“看图说话“,编程小白也能逆袭大模型!

Flamingo是DeepMind发布的开创性视觉语言模型,采用"冻结大模型+轻量连接"策略,通过感知重采样器和门控交叉注意力机制,仅用极少的计算资源和样本(0-32个),让模型具备快速学习和适应新任务的能力。这种参数高效的多模态对齐策略,为后续多模态大模型奠定了基础,开启了视觉大模型时代。
原创
博文更新于 前天 10:48 ·
653 阅读 ·
13 点赞 ·
0 评论 ·
17 收藏

【AI爆火】Agent框架怎么选?小白程序员必看的5大主流框架对比+实战案例,避坑指南在此!

文章对比了Workflow与Agent技术的区别,指出当问题复杂、需要跨系统查证且需在对话中决策时,应选择Agent框架而非纯Workflow。详细分析了AutoGPT、LangGraph、Dify、CrewAI和AutoGen五大主流框架的特点与适用场景,为开发者提供清晰的选型指南,帮助根据实际需求选择最适合的Agent框架。
原创
博文更新于 前天 10:30 ·
1173 阅读 ·
30 点赞 ·
0 评论 ·
35 收藏

AI新技能包大揭秘!让大模型从“知道“到“会做“,小白程序员秒变AI大神!

Skills是Anthropic推出的Claude新特性,通过模块化文件夹集合和渐进式披露机制,将AI从"知道"变为"会做"。它封装专业知识、扩展AI能力边界、提供团队协作和标准化工作流,解决了上下文成本、知识复用和执行确定性等问题,让通用大模型具备领域专家能力,实现从需求到部署的全流程自动化。
原创
博文更新于 前天 10:00 ·
649 阅读 ·
20 点赞 ·
0 评论 ·
26 收藏

震惊!AI Agent竟是“懂王“+“打工人“的完美结合?60分钟带你从零掌握大模型深水区开发秘籍!

AI Agent是AI领域的"深水区",由大模型(Brain)+工具(Hands)+规划(Planning)组成,不仅能"说"还能"做"。文章详解了感知-规划-行动等10个核心概念,介绍了典型应用场景和开发流程,并总结了10个常见陷阱及规避方法,为开发者提供全面的AI Agent开发指南。
原创
博文更新于 前天 10:00 ·
680 阅读 ·
21 点赞 ·
0 评论 ·
18 收藏

真香警告!大模型已完成“背答案“到“背过程“的跃迁,Agent时代程序员将何去何从

方汉提出Agent本质是"可验证过程的自动化",而非AGI雏形。大模型已完成从"背答案"到"背过程"的关键跃迁,AI Office将最先落地。Agent时代,重复操作岗位将消失,人类将从执行者转变为过程架构师。通用Agent可能为伪命题,垂类场景需重建过程数据集。未来组织将被重塑,基础模型收敛,专业Agent成为组织基本单元。
原创
博文更新于 2025.12.17 ·
949 阅读 ·
20 点赞 ·
0 评论 ·
12 收藏

AGI的瓶颈不是模型规模,而是这个“协调层“!斯坦福新研究让大模型真正“开窍“

斯坦福研究颠覆对LLM的认知,提出LLM距离AGI只差一个"协调层"。UCCT理论指出LLM从"幻觉"到"推理"是一种相变,当锚定信号达到临界阈值时,模型行为突变。MACI架构通过辩论、评判和事务性内存实现这种协调,使LLM从模式匹配进化为目标导向推理。AGI的瓶颈在于协调而非规模,将重新定义大语言模型的本质与未来。
原创
博文更新于 2025.12.17 ·
861 阅读 ·
7 点赞 ·
0 评论 ·
16 收藏

AI开发避坑指南:原来大模型也有“情绪链“!GPT稳定如老狗,Claude敏感如少女,开发时需注意这些“情绪雷区“

华东师大与复旦大学研究发现,8大大模型家族均具有独特的"情感链",表现为家族特异的情感指纹、负面输入下的情感麻木、负面信息偏好等。这些情绪特征不仅影响模型输出风格,还会改变用户体验及多智能体交互,甚至导致群体极化。研究建议开发者关注AI情绪对齐,在聊天陪伴、内容推荐等场景中加入情绪约束机制,避免负面循环。
原创
博文更新于 2025.12.17 ·
798 阅读 ·
31 点赞 ·
0 评论 ·
8 收藏

[特殊字符]爆肝总结!吴恩达AI课揭秘:大模型不是神仙!这5大局限性不知道,你的AI项目可能要翻车!

本文介绍了吴恩达关于生成式AI能力与局限性的思考。文章提出一个实用思维框架:将大语言模型(LLM)类比为刚毕业的大学生,能处理需要常识但无需专业知识的工作。同时指出了LLM的五大局限:知识截止日期、事实幻觉、输入输出长度限制、结构化数据处理能力弱、可能输出偏见内容。文章强调理解这些局限对合理使用AI至关重要,并预告后续将介绍克服这些限制的技术。最后简要提及了分阶段学习大模型AI的路径,从基础应用到高阶开发再到模型训练。
原创
博文更新于 2025.12.17 ·
748 阅读 ·
27 点赞 ·
0 评论 ·
26 收藏

【AI开发必备】Mini Agent:零门槛构建智能Agent,支持MCP工具和无限长任务,GitHub已爆![特殊字符]

Mini Agent是使用MiniMax M2模型构建Agent的最佳实践项目,兼容Anthropic API并支持交错思维,解锁强大推理能力。项目提供完整执行循环、持久化记忆、智能上下文管理、15种Claude技能集成、MCP工具支持和全面日志记录,设计简洁明了,是构建高级Agent的理想起点。
原创
博文更新于 2025.12.16 ·
473 阅读 ·
19 点赞 ·
0 评论 ·
16 收藏

LangGraph入门到精通:解锁大模型数据流转的“四大金刚“!

LangGraph作为智能体开发框架的核心调度中枢,在复杂业务场景中发挥着关键作用。它通过节点和边的设计实现四大核心功能:状态驱动的流转调度确保数据有序传递;支持多步骤、多角色的数据协作;提供执行过程的可追溯性与容错机制;实现数据处理与流转逻辑的解耦。与LangChain和MCP配合,LangGraph专注于数据流转的路径规划和全程管控,将零散数据处理转变为完整的智能体执行闭环。该框架解决了从简单案例到复杂业务场景的过渡难题,是构建可协作、可回溯智能体系统的关键组件。
原创
博文更新于 2025.12.16 ·
698 阅读 ·
11 点赞 ·
0 评论 ·
20 收藏

【yyds】9种高级Chunking策略让RAG系统性能起飞,大模型开发者必看干货!

本文系统介绍了9种高级文本分块策略,包括滑动窗口分块、自适应分块、实体分块和主题分块等,详细说明了每种策略的实现步骤、适用场景和具体案例。这些方法针对不同领域如医疗病历、法律合同、新闻档案和研究论文等场景,通过优化分块方式显著提升检索准确性和上下文保持度。文章还提供了可视化示意图和实现提示,帮助开发者根据具体任务需求选择最优分块方案。
原创
博文更新于 2025.12.16 ·
956 阅读 ·
22 点赞 ·
0 评论 ·
28 收藏
加载更多