Alter__
码龄9年
求更新 关注
提问 私信
  • 博客:89,715
    89,715
    总访问量
  • 86
    原创
  • 24
    粉丝
  • 60
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
加入CSDN时间: 2016-11-28

个人简介:技能树技能点击中

博客简介:

Alter__的博客

博客描述:
来吧,一路黑到底
查看详细资料
个人成就
  • 获得27次点赞
  • 内容获得9次评论
  • 获得116次收藏
  • 博客总排名532,095名
创作历程
  • 1篇
    2023年
  • 23篇
    2021年
  • 45篇
    2020年
  • 17篇
    2017年
  • 1篇
    2016年
成就勋章
TA的专栏
  • python
    13篇
  • 数理知识
    1篇
  • 深度学习
    14篇
  • 机器学习
    13篇
  • c、c++、数据结构与算法
    13篇
  • office
    11篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

普通用户git安装、使用git上传与下载

文章目录前言linux安装git安装yum和依赖包安装git前言虽然普通用户可以安装git,但是一些依赖包还是要用root来解决,依赖包太多,让root来安装最快。linux安装git安装yum和依赖包输入一下命令,在root用户下面:apt-get updateapt-get upgradeapt-get install yum这几步安装好了发现没有源,接着在root下输入下面命令apt-get install build-essentialcd /etc/yum/repos.d/
原创
博文更新于 2023.08.08 ·
1006 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

逻辑斯蒂回归以及它的梯度下降法

预测任务分为:前面提到用感知机进行分类时,得到了是离散变量。但是实际上是因为signsignsign函数,如果用这个函数,不就是线性回归了嘛!逻辑斯蒂回归(logistic distribution)模型适用于多类分类问题,它是对数线性模型,属于判别模型。它源自于逻辑斯蒂分布。优点:计算代价不高,易于理解和实现。缺点:容易欠拟合,分类精度可能不高。首先我们需要知道什么是sigmoidsigmoidsigmoid函数?sigmoidsigmoidsigmoid是一个在生物学中常见的S型生长曲线,sig
原创
博文更新于 2023.05.05 ·
4474 阅读 ·
8 点赞 ·
0 评论 ·
34 收藏

谁说菜鸟不会数据分析(1)

一. 常用指标和术语平均数:将总体内各单位的数量差异抽象化,代表总体的一般水平,掩盖了总体各单位的差异。绝对数与相对数:从业务角度看,绝对数就是数量,相对数就是质量。绝对数反应客观现象总体在一定时间、地点条件下的总规模、总水平;相对数是指由两个有联系的指标对比计算而得到的数值。百分比与百分点:百分比表示一个数是另一个数的百分之几;百分点表示不同时期以百分数的形式表示的相对指标的变动幅度。频率与频数:频数是指个别数据重复的个数,频率是指每组类别次数与总次数的比值。比例与比率:比例是指总体中各部分的
原创
博文更新于 2023.05.04 ·
564 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

(转载)简述马尔可夫链

马尔科夫链的思想:过去所有的信息都已经被保存到了现在的状态,基于现在就可以预测未来。状态转移矩阵有一个非常重要的特性,经过一定有限次数序列的转换,最终一定可以得到一个稳定的概率分布 ,且与初始状态概率分布无关。参考:https://zhuanlan.zhihu.com/p/448575579。”,即下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。马尔科夫链为状态空间中一个状态到另一个状态的转换随机过程,该过程要求具备“可以用来求一段时间变化后的转移概率矩阵,直接用执行矩阵乘法。
原创
博文更新于 2023.04.22 ·
618 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python 图像金字塔 模版匹配

发布资源 2020.12.01 ·
py

DIDL笔记(pytorch版)(四)

文章目录正向传播反向传播衰减和爆炸正向传播白话总结:输入xxx与W(1)W^{(1)}W(1)做乘运算得到zzz,zzz经过激活函数得到中间层输入hhh,hhh与W(2)W^{(2)}W(2)做乘运算得到输出结果ooo,到这里就如果是预测就结束了,但是如果是训练的话还需要其他步骤。ooo与真值yyy经过损失函数得到损失值LLL,LLL再与正则化项sss(W(1)W^{(1)}W(1)、W(1)W^{(1)}W(1)得到)相加得到目标函数JJJ,我们在学习的时候就知道,我们要做的就是最小化目标函数JJJ
原创
博文更新于 2021.11.14 ·
364 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

dive into deep learning 笔记(pytorch版本)(一)

文章目录前言算数操作索引前言只记录感兴趣的东西,详细参考如下。参考:http://tangshusen.me/Dive-into-DL-PyTorch/#/《dive into deep learning》pytorch文档:https://pytorch.org/docs/stable/torch.html算数操作pytorch算数运算+、-、*、/,除了最常见的表示方法,还有in-place(原地)形式y.add_(x)# 注:PyTorch操作in-place版本都有后缀_,
原创
博文更新于 2021.06.16 ·
1093 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

DIDL笔记(pytorch版)(八)

文章目录前言NiNGoogLeNet前言LeNet、AlexNet和VGG都是不断的加深模型的层数,看网络结构可以看出后者有前者的影子,并且都是一系列卷积+最后全连接的操作。NiN却是网络串联网络,并且NiN最后的分类方法也很不同。NiN之前的网络都是卷积提取特征之后带全连接做分类。NiN提供另一个思路,卷积层和全连接层交替。因为全连接层的输入输出要是二维,卷积通常是四维,为了方便全连接层使用1 ×\times× 1 卷积代替。原理之前解释过。贡献:空间信息有效的传递到后层。最后分类采用输
原创
博文更新于 2021.06.16 ·
347 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

DIDL笔记(pytorch版)(九)

文章目录标准化和归一化全连接层批量归一化卷积层批量归一化预测时批量归一化残差网络背景残差块标准化和归一化标准化处理:(x - x.mean()) / (x.std())处理后的任意一个特征在数据集中所有样本上的均值为0、标准差为1。标准化处理输入数据使各个特征的分布相近:这往往更容易训练出有效的模型。对深层神经网络来说,即使输入数据已做标准化,训练中模型参数的更新依然很容易造成靠近输出层的输出剧烈变化。在模型训练时,批量归一化利用小批量上的均值和标准差,不断调整神经网络中间输出,从而使整个神经网络在各
原创
博文更新于 2021.06.16 ·
554 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

DIDL笔记(pytorch版)(十二)

文章目录图像增广锚框图像增广import d2l as d2lfrom PIL import Imagefrom matplotlib import pyplot as plt # 画布import torchvisiondef show_images(imgs, num_rows, num_cols, scale=2): figsize = (num_cols * scale, num_rows * scale) _, axes = plt.subplots(num_
原创
博文更新于 2021.06.15 ·
801 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

DIDL笔记(pytorch版)(十一)

文章目录前言AdaGrad算法代码RMSProp算法代码AdaDelta算法Adam算法补充前言已知梯度下降会因为不同维度收敛速度不同导致震荡幅度加大的问题,动量法提出当前梯度方向应充分考虑之前的梯度方向 缓解了梯度震荡幅度大的问题。但是上面两种对于每个维度的梯度值使用同样的学习率,这会导致个别维度收敛速度过慢。AdaGrad算法,它根据自变量在每个维度的梯度值的大小来调整各个维度上的学习率,从而避免统一的学习率难以适应所有维度的问题。AdaGrad算法AdaGrad算法还是有问题的:当学习率在
原创
博文更新于 2021.06.10 ·
561 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

DIDL笔记(pytorch版)(十)

文章目录前言前言优化方法中,梯度下降、随机梯度下降、小批量随机梯度下降已经在前面讲过线性支持向量机的随机梯度下降和逻辑斯蒂回归的梯度下降。核心在与我们需要得到的多维参数x(或者w),都是先初始化后(0或者随机),依靠下面公式不断迭代,满足最终条件结束得到的。梯度下降也是有问题的,它对于自变量的迭代方向仅仅取决于自变量当前位置,不考虑之前的方向,这带来的问题明显的表达就是震荡。...
原创
博文更新于 2021.06.08 ·
636 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Pytorc学习笔记

文章目录基础知识机器学习的操作数据集的处理基础知识创建tensorimport torch# 构造5x3的矩阵,不初始化result = torch.empty(3,3) # 构造一个随机初始化的矩阵x = torch.rand(5,3) # 直接用数据构造一个张量x = torch.tensor([5.5,3]) # 数据类型是int32的0矩阵y = torch.zeros(3,3,dtype=torch.float) # 默认返回一个与y有同样torch.
原创
博文更新于 2021.06.04 ·
431 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

VGGNet论文总结

文章目录VGG简介VGGNet目的和结果VGGNet架构和特点VGGNet的训练训练时图像处理测试测试的两种策略VGG简介论文名称:《VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION》。作者团队:Karen Simonyan ∗ & Andrew Zisserman +;Visual Geometry Group, Department of Engineering Science, University o
原创
博文更新于 2021.06.02 ·
2074 阅读 ·
0 点赞 ·
2 评论 ·
3 收藏

DIDL笔记(pytorch版)(五)

模型构造方法一:继承nn.Module类(常用)nn.Module类是所有神经网络模块的基类。用这么类构造模型需要重载__init__函数和forward函数(正向传播)。文中说这个类无须定义反向传播函数,因为系统会自动生成,其解释看下面参考。参考:https://zhuanlan.zhihu.com/p/37213786https://www.cnblogs.com/luckyplj/p/13378293.html虽然最后的结果会grad_fn会显示AddmmBackward,但是这个并没有
原创
博文更新于 2021.06.02 ·
420 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

DIDL笔记(pytorch版)(七)

文章目录前言LeNetAlexNetVGGNet前言大致总结一下深度学习的流程:配置变量:批次,学习率,迭代次数设备等。导入数据:数据预处理(标准化,清洗,去噪,划分数据集),弹性形变等。搭建网络:卷积、池化、激活函数等。训练模型:选择损失函数,选择优化方法,迭代循环嵌套批次循环。(训练外层可以套k折交叉验证)内层循环执行过程:x输入网络得到输出y->y与标签比对得到损失->梯度清零->计算梯度->反馈->记录损失以及正确率方便每次迭代后展示。LeN
原创
博文更新于 2021.06.02 ·
586 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

DIDL笔记(pytorch版)(六)

文章目录前言卷积运算和互相关运算卷积之后输入输出大小问题填充步幅前言只记录感兴趣的知识点。卷积是网络中的一些操作。卷积运算和互相关运算互相关运算就是输入子数组与核数组按照元素相乘并且求和得到。但是卷积运算其实是数学中比较重要的运算,是一种特殊的加权求和。卷积运算与互相关运算的不同体现在"卷",意思是核数组需要在原来的基础上翻折或者旋转(180度)再和输入按位相乘并求和。但其实没有关系,在深度学习领域里面,我们一般把互相关运算就叫做卷积运算,因为核数组旋转与否不影响最终结果。参考:https
原创
博文更新于 2021.06.02 ·
569 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python flask学习心得(一)

有很久没有更新我的博客了,在学习flask去了,别人都说flask不难,其实现在我也这么觉得,但是在刚接触的时候还是有点吃力的。在学习的过程中查阅了不少,也了解了许多,今天想做个总结。。。以免觉得学了那么久什么都没学到,还有防止以后忘记。————————————————我是罗嗦的分割先线————————————————————一.关于装饰器,路由最开始接触的时候觉得好神奇,只会照着
原创
博文更新于 2021.05.31 ·
9758 阅读 ·
2 点赞 ·
1 评论 ·
26 收藏

python flask复习

2020/5/8富文本编辑器改成Markdown编辑器装饰器装饰器==拓展原来函数的一种函数,这个函数的特殊之处在于它的返回值也是一个函数。使用python装饰器的好处就是在不用更改原函数的代码前提下给函数增加新的功能。参考:https://blog.csdn.net/xiangxianghehe/article/details/77170585@app.route('/') # @app.errorhandler(404) 错误页面的装饰器def hello():
原创
博文更新于 2021.05.31 ·
385 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python——numpy基本用法学习笔记

文章目录生成数组数组基本信息数组修改数组操作1. 矩阵操作2. 基本索引3. 布尔索引生成数组# N维数组对象——ndarraydata = np.random.randn(n, m) # 随机生成(n,m)维数组arr = np.array() # array函数可以接受任意序列型对象np.zeros(n) # 生成长达n*1维数字为0的数组np.zeros((n, m)) # 生成长达n*m维数字为0的数组np.empty((2, 3, 2)) # 生成2*3*
原创
博文更新于 2021.05.31 ·
637 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏
加载更多