九章云极AladdinEdu
码龄1年
求更新 关注
提问 私信
  • 博客:436,694
    436,694
    总访问量
  • 433
    原创
  • 6,113
    排名
  • 3,893
    粉丝
  • 2
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
目前就职: 北京九章云极科技有限公司
加入CSDN时间: 2025-03-21

个人简介:AladdinEdu,你的AI学习实践工作坊。让想法落地,让研究加速。助力高校AI人才成长,点亮创新未来。

博客简介:

AladdinEdu,你的AI学习实践工作坊。让想法落地,让研究加速。助力高校AI人才成长,点亮创新未来。

查看详细资料
博客首页
个人成就
  • 九章云极AladdinEdu官方账号
  • 获得8,259次点赞
  • 内容获得22次评论
  • 获得7,089次收藏
  • 代码片获得420次分享
  • 原力等级
    原力等级
    6
    原力分
    1,957
    本月获得
    318
创作历程
  • 433篇
    2025年
成就勋章
TA的专栏
  • AladdinEdu
    3篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 1

TA的推广
兴趣领域 设置
  • 人工智能
    opencv数据挖掘语音识别计算机视觉目标检测机器学习人工智能深度学习神经网络自然语言处理
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 资源
  • 问答
  • 帖子
  • 视频
更多
  • 最近

  • 文章

  • 专栏

  • 资源

  • 问答

  • 帖子

  • 视频

  • 社区

  • 课程

  • 关注/订阅/互动

  • 收藏

搜索 取消

项目分享|MimicMotion:基于置信度姿态引导的高质量人体运动视频生成

MimicMotion是一款由腾讯与上海交通大学团队研发的可控视频生成框架,获ICML 2025收录。它能在任意运动引导下生成高质量、任意长度的视频,具备细节丰富、时间平滑性好、视频时长可观等优势。
原创
博文更新于 4 小时前 ·
127 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

项目分享|ChatTTS:专为对话场景打造的生成式语音模型

ChatTTS是一款专注于对话场景的生成式语音模型,支持中英双语,具备自然表达、多 speaker 切换、细粒度韵律控制等特点。本文将介绍其项目概况、创新优势及技术实现,涵盖安装部署与代码示例,助力开发者快速上手。该模型开源且持续迭代,为语音合成研究与应用提供新选择。
原创
博文更新于 5 小时前 ·
742 阅读 ·
19 点赞 ·
0 评论 ·
15 收藏

项目分享|UltraRAG v2:面向科研的“RAG实验”加速器

UltraRAG 是一款基于 MCP 架构的 RAG 框架,由多机构联合推出。它能让科研人员以低代码方式快速实现复杂 RAG 系统,支持多模态,便于复现与扩展,还内置评测体系。通过组件化封装等设计,降低技术门槛,助力研究者专注创新。
原创
博文更新于 8 小时前 ·
266 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

项目分享|TimesFM:谷歌推出的时间序列基础模型

TimesFM是谷歌研究团队开发的时间序列基础模型,可用于时间序列预测。其最新版本为2.5,相比旧版参数更少、上下文长度更长,还支持连续分位数预测等。本文将介绍该项目、其创新点与优势及技术相关内容,助力读者快速了解。
原创
博文更新于 8 小时前 ·
150 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

项目分享|AI 交易代理:一个开源量化交易智能体项目

该项目是一个开源的AI交易代理生态系统,包含多种类型的AI代理,覆盖回溯测试、实时交易、市场分析等交易全流程。其创新点在于多代理协同、swarm模式及并行处理,核心优势为开源、功能丰富实用。部署需克隆项目、配置环境、安装依赖等步骤,相关内容可在AladdinEdu课题广场查看。
原创
博文更新于 9 小时前 ·
565 阅读 ·
10 点赞 ·
0 评论 ·
3 收藏

项目分享|Dayflow:自动记录每日活动的macOS 时间线工具

Dayflow 是一款原生 macOS 应用,通过 1 FPS 录制屏幕,每 15 分钟用 AI 分析,生成含摘要和分心高亮的每日活动时间线。支持多种 AI 提供商,注重隐私,轻量高效,还含日记等功能,可助用户了解时间分配。
原创
博文更新于 9 小时前 ·
590 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

PyTorch源码解读之Autograd:动态计算图的构建与自动微分实现——深入框架核心,理解魔法之源

本文深入剖析PyTorch框架核心自动微分引擎Autograd的实现原理,系统解析动态计算图的构建机制与反向传播算法实现。文章从计算图理论基础出发,详细解读Tensor的梯度追踪设计、Function类的算子抽象、Edge数据结构连接关系,揭示前向传播如何隐式构建计算图、反向传播如何动态执行梯度计算。通过源码级分析和可视化案例,深入探讨PyTorch自动微分的工程实现细节、内存优化策略及扩展机制,为深入理解深度学习框架核心原理提供全面技术参考。
原创
博文更新于 10 小时前 ·
804 阅读 ·
21 点赞 ·
0 评论 ·
24 收藏

大语言模型推理与部署工程:KV缓存、量化与服务化框架

本文系统阐述了大语言模型从推理优化到生产部署的核心工程挑战与解决方案。聚焦于决定大模型能否真正落地的三大关键技术:KV缓存通过避免重复计算来加速自回归生成,量化技术(权重量化、激活量化、KV缓存量化)大幅降低内存与带宽需求,以及服务化框架(vLLM、TGI)实现高吞吐、低延迟的并发推理服务。文章深入剖析了各项技术的原理、实现细节与权衡,并结合实际场景提供选型与优化指南,旨在为开发者提供一套完整、可操作的工程化知识体系,助力大模型从实验室走向实际应用。
原创
博文更新于 14 小时前 ·
671 阅读 ·
8 点赞 ·
0 评论 ·
20 收藏

视觉Transformer实战:ViT、Swin、DeiT的预训练、微调与部署

本文系统阐述了视觉Transformer(ViT)的工程化全流程实践指南,聚焦于ViT、Swin Transformer与DeiT三大核心模型。文章深入剖析了自注意力机制在视觉领域的适配与挑战,详细解读了各模型的架构设计思想与实现细节。核心部分提供了从零开始预训练、针对下游任务的微调策略(包括数据增强、学习率调度与知识蒸馏),以及覆盖云端与边缘端的部署优化方案(模型压缩、硬件适配与加速推理)。本文旨在为研究人员与工程师提供一套从理论理解到工业落地的完整技术路径。
原创
博文更新于 18 小时前 ·
755 阅读 ·
19 点赞 ·
0 评论 ·
19 收藏

图像分割全攻略:语义分割、实例分割与全景分割的技术路线图

图像分割是计算机视觉中对图像进行像素级解析的核心任务。本文系统梳理了图像分割的三大子领域:为每个像素赋予类别标签的语义分割,在语义分割基础上区分不同个体的实例分割,以及统一二者的全景分割。文章以技术路线图的视角,深度解析了从FCN、U-Net、DeepLab到Mask R-CNN、YOLACT、SOLO等里程碑模型的演进逻辑与核心技术,并探讨了基于Transformer和神经架构搜索的新范式,为读者构建从基础概念到前沿进展的完整知识体系。
原创
博文更新于 22 小时前 ·
903 阅读 ·
22 点赞 ·
0 评论 ·
21 收藏

代码大模型解析:Codex、AlphaCode与Code Llama的技术原理与应用——AI for Software Engineering

本文系统解析代码大模型的技术原理与发展脉络,深入剖析Codex、AlphaCode和Code Llama三大代表性模型的核心架构、训练方法与应用特性。文章从软件工程的现实需求出发,分析代码智能化的关键技术突破,包括代码理解、生成、测试与优化等全流程能力。通过对比研究揭示不同技术路线的优势局限,探讨代码大模型在开发效率提升、代码质量保障和教育普及等方面的实践应用,并展望多模态编程、自主软件工程等前沿方向,为AI驱动的软件开发新时代提供全面技术参考。
原创
博文更新于 前天 16:00 ·
414 阅读 ·
13 点赞 ·
0 评论 ·
9 收藏

论文分享|利用贝叶斯先验与隐藏信息实现个性化联邦学习

本文深入解读了由四川大学团队提出的研究《Personalized Federated Learning with Hidden Information on Personalized Prior》。该论文针对联邦学习中因数据非独立同分布(Non-IID)导致的个性化难题,提出了一个名为 pFedBreD 的统一贝叶斯优化框架。其核心创新在于:1)显式建模了客户端的“隐藏信息”,即数据来源于特定客户端这一事实,并将其融入贝叶斯推断框架;2)通过引入缩放指数族作为个性化模型的先验分布,将个性化联邦学习问题转化为
原创
博文更新于 前天 14:00 ·
1202 阅读 ·
27 点赞 ·
0 评论 ·
19 收藏

预训练语言模型演进:从BERT、GPT到T5的统一理解

本文系统梳理了预训练语言模型从BERT、GPT到T5的技术演进谱系。文章以“预训练-微调”范式为核心线索,深入剖析了三大代表性架构:BERT开创的双向编码器范式及其掩码语言建模任务,GPT系列奠定的自回归解码器范式与生成能力,以及T5提出的“文本到文本”统一框架。通过对比模型架构、预训练目标、能力特点与局限,揭示了NLP如何从针对特定任务的模型设计,走向通过大规模预训练获得通用任务理解与解决能力的根本性范式转变,为理解当前大语言模型浪潮提供清晰的技术坐标系。
原创
博文更新于 前天 12:00 ·
1234 阅读 ·
29 点赞 ·
0 评论 ·
30 收藏

目标检测算法串讲:从R-CNN到DETR,两阶段与单阶段的统一视角

本文系统梳理了目标检测算法从R-CNN到DETR的技术演进历程。通过构建一个以“特征表示-候选区域-预测精化”为核心的分析框架,文章将两阶段(R-CNN系列)、单阶段(YOLO、SSD系列)以及基于Transformer的检测范式(DETR系列)置于统一视角下进行解读。深入剖析了各代表性算法的设计思想、关键改进与内在局限,揭示了检测技术如何从多步骤流水线向端到端一体化演进,从手工设计先验向数据驱动学习演进的核心逻辑,旨在为读者建立脉络清晰、理解深刻的目标检测知识体系。
原创
博文更新于 前天 08:00 ·
491 阅读 ·
8 点赞 ·
0 评论 ·
13 收藏

稀疏与混合专家模型:Switch Transformer与DeepSpeed-MoE实战解析

本文深入剖析了稀疏与混合专家模型这一突破模型规模瓶颈的关键技术。文章以通往万亿参数模型为背景,系统阐述了混合专家的基本原理与训练挑战,重点解析了Google Switch Transformer的简化路由设计与负载均衡策略,并详细解读了微软DeepSpeed-MoE框架如何通过零冗余优化器、分层参数划分等创新实现高效分布式训练。通过理论分析与实战策略的结合,本文揭示了MoE技术如何在模型容量、计算效率与成本控制间取得平衡,为超大规模AI模型的开发与部署提供完整的技术路径。
原创
博文更新于 前天 04:00 ·
469 阅读 ·
13 点赞 ·
0 评论 ·
20 收藏

论文分享|重新思考循环神经网络与图像分类的改进(Rethinking Recurrent Neural Networks and Other Improvements for Image Class)

本文深入解析了Nguyen Huu Phong与Bernardete Ribeiro的研究论文《Rethinking Recurrent Neural Networks and Other Improvements for Image Classification》。该论文提出了两项核心创新:1)将循环神经网络(RNN)作为关键层集成到卷积神经网络(ConvNet)中,以增强图像特征的表征能力;2)设计了一种端到端的多模型集成(E2E-3M)框架,使单一模型能够学习并融合多个专家模型的“经验”。 此外,论文
原创
博文更新于 2025.12.17 ·
676 阅读 ·
10 点赞 ·
0 评论 ·
8 收藏

多语言与大模型:XLM、mT5与大模型的跨语言能力分析——AI的“巴别塔”挑战

本文系统分析多语言大模型的技术演进与跨语言能力实现机制,深入剖析XLM、mT5等先驱模型的架构创新及其局限,全面解读GPT、LLaMA、ChatGLM等现代大模型的跨语言迁移机制与涌现能力。文章从词汇表征、句法对齐、语义迁移等多维度探讨多语言建模的核心挑战,评估主流模型在翻译、跨语言问答、代码生成等任务的实际表现,并展望指令对齐、低资源语言优化、多模态扩展等前沿方向,为构建真正普适的多语言AI系统提供技术路线图。
原创
博文更新于 2025.12.17 ·
723 阅读 ·
24 点赞 ·
0 评论 ·
14 收藏

模型轻量化在CV中的实践:MobileNet、ShuffleNet与神经架构搜索

本文系统阐述了计算机视觉中模型轻量化的核心技术路径与实践方法。针对移动端和边缘设备对效率的苛刻要求,文章深入剖析了以MobileNet系列为代表的深度可分离卷积设计哲学,以ShuffleNet系列为代表的通道混洗与组卷积优化思想,以及以神经架构搜索(NAS)为代表的自动化轻量网络设计范式。通过对比分析各技术的核心原理、演进历程与工程权衡,本文旨在为开发者在模型精度、速度与大小之间找到最佳平衡点提供完整的理论与实战指南,真正实现视觉AI在资源受限设备上的高效部署。
原创
博文更新于 2025.12.17 ·
500 阅读 ·
18 点赞 ·
0 评论 ·
24 收藏

《Attention Is All You Need》精读与复现:手撕Transformer编码器/解码器

本文对2017年里程碑论文《Attention Is All You Need》进行深度精读与完整代码复现,系统性地解析了Transformer这一深度学习时代基石的架构原理。文章不仅详细拆解了位置编码、缩放点积注意力、多头注意力、编码器/解码器层等核心组件的数学原理,还提供了从零开始的PyTorch实现,涵盖掩码机制、训练技巧与推理过程。通过理论与代码的紧密结合,帮助读者透彻理解Transformer如何彻底革新序列建模,并为掌握BERT、GPT等后续革命性模型奠定坚实基础。
原创
博文更新于 2025.12.17 ·
2456 阅读 ·
87 点赞 ·
0 评论 ·
27 收藏

记忆增强网络:神经图灵机与动态记忆网络的设计思想

本文深入探讨了记忆增强神经网络的设计思想,重点解析了神经图灵机与动态记忆网络两大核心架构。文章从传统神经网络记忆能力的固有局限出发,阐述了引入外部可读写记忆体的必要性。通过详细拆解NTM的控制器、记忆矩阵与基于注意力机制的读写操作,以及DMN的问题聚焦、情景记忆与迭代推理机制,揭示了如何通过结构化记忆与可微分访问,使神经网络具备长程依赖处理、复杂推理和知识持续积累的能力。本文旨在系统阐述让机器模拟人类记忆与推理过程的关键技术路径。
原创
博文更新于 2025.12.17 ·
912 阅读 ·
9 点赞 ·
0 评论 ·
18 收藏
加载更多