AI软件工程实践
码龄1年
求更新 关注
提问 私信
  • 博客:2,085,271
    2,085,271
    总访问量
  • 2,556
    原创
  • 445
    排名
  • 6,726
    粉丝
  • 34
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
加入CSDN时间: 2025-04-05

个人简介:聚焦软件工程3.0全流程,分享需求分析、系统设计、编码实现、测试维护等最佳实践,探讨敏捷开发、AI DevOps等现代软件工程方法,助力团队提升开发效率与软件质量。

博客简介:

软件工程实践的博客

博客描述:
聚焦软件工程全流程,分享需求分析、系统设计、编码实现、测试维护等最佳实践,探讨敏捷开发、DevOps等现代软件工程方法,
查看详细资料
个人成就
  • 获得41,819次点赞
  • 内容获得21次评论
  • 获得41,866次收藏
  • 代码片获得108次分享
  • 原力等级
    原力等级
    7
    原力分
    3,508
    本月获得
    249
创作历程
  • 2556篇
    2025年
成就勋章
TA的专栏
  • 软件3.0
    付费
    1050篇
  • 软件工程最佳实践 AI软件构建 大数据系统架构
    付费
    1678篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

兴趣领域 设置
  • Python
    python
  • Java
    java
  • 大数据
    大数据
  • 前端
    前端
  • 后端
    后端架构
  • 人工智能
    人工智能
  • 软件工程
    gitumlci/cdjira需求分析结对编程团队开发scrumsprint个人开发规格说明书极限编程敏捷流程性能优化内容运营用户运营产品运营流量运营交互uxui开源软件工程代码复审重构源代码管理代码规范软件构建cmmi甘特图流程图代码覆盖率设计模式设计规范
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

提示工程架构师:如何让Agentic AI的对话更贴合用户需求?

当你问AI“周末带5岁孩子去哪玩”,它是直接甩给你“十大亲子景点清单”,还是会先问“孩子喜欢恐龙还是绘本?有没有预算限制?这背后的差异,正是**Agentic AI(智能体AI)**与传统对话系统的核心区别——前者需要“主动理解用户需求”,而后者只是“执行指令”。作为提示工程架构师,我们的任务就是给Agentic AI写一份“对话说明书”,教它如何从用户的只言片语中捕捉隐含意图、结合上下文做出决策、甚至主动追问关键信息。本文将从核心逻辑技术实现实践案例。
原创
博文更新于 2 小时前 ·
197 阅读 ·
12 点赞 ·
0 评论 ·
13 收藏

Storm在日志实时分析中的应用:ELK替代方案

传统ELK日志分析架构的局限性Storm实时计算框架的核心优势如何用Storm搭建“秒级响应”的日志实时分析系统覆盖从概念解释到实战落地的全流程,适合对日志分析、实时计算感兴趣的开发者和运维人员。本文将按照“概念解释→原理对比→实战落地→场景拓展”的逻辑展开,通过生活案例、代码示例和拓扑图,帮你彻底掌握Storm在日志实时分析中的应用。@Override// 配置Kafka消费者@Override// 从Kafka拉取日志(每秒拉取一次)
原创
博文更新于 6 小时前 ·
277 阅读 ·
7 点赞 ·
0 评论 ·
11 收藏

深度探索大数据数据标注,挖掘数据背后的价值

当我们谈论“大数据”时,往往聚焦于“大”——TB级的存储、实时流的处理、复杂的算法模型。未经标注的大数据,本质上是“沉默的”。就像一本用未知语言写的书,即使页数再多,也无法传递任何信息。数据标注,就是大数据的“翻译官”。它将原始数据(图片、语音、文本、视频)转换成机器能理解的“语言”(标签、边界框、语义分割图),让数据从“原始素材”升级为“可利用的资产”。无论是自动驾驶的行人检测、电商的个性化推荐,还是医疗影像的肿瘤识别,所有AI模型的效果,都建立在高质量数据标注的基础上。
原创
博文更新于 9 小时前 ·
274 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

Hive与Tarantool集成:内存数据库集成

随着数据量的不断增长和数据分析需求的日益复杂,企业需要更高效的数据处理和存储解决方案。Hive作为一个基于Hadoop的数据仓库工具,提供了类似于SQL的查询语言,方便用户进行大规模数据的分析。而Tarantool是一个高性能的内存数据库,具有快速的读写性能和强大的实时处理能力。将Hive与Tarantool集成的目的在于充分发挥两者的优势,实现数据的高效存储和快速分析。
原创
博文更新于 12 小时前 ·
427 阅读 ·
18 点赞 ·
0 评论 ·
11 收藏

Spark on Kubernetes实战:云原生大数据处理

想象一下,你身处一家大型电商公司,每天都有海量的用户行为数据涌入,包括浏览记录、购买行为、搜索关键词等等。这些数据蕴含着巨大的商业价值,能帮助公司精准地推荐商品、优化营销策略,从而提升销售额和用户满意度。然而,如何高效地处理和分析这些海量数据,成为了摆在技术团队面前的一道难题。传统的大数据处理方式,如在物理机或虚拟机上部署大数据处理框架,往往面临资源利用率低、扩展性差等问题。随着数据量的不断增长,这些问题愈发凸显,严重影响了数据分析的效率和业务的发展。这时,云原生技术的出现为大数据处理带来了新的曙光。
原创
博文更新于 16 小时前 ·
633 阅读 ·
6 点赞 ·
0 评论 ·
8 收藏

大数据领域数据交易:进阶之路秘籍

合规先行:数据分类分级是基础,能匿名化的尽量匿名化;价值驱动:加工后的衍生数据更有竞争力,比如用户画像、实时流;技术赋能:用区块链解决溯源,用联邦学习解决敏感数据交易;效率优先:API化、实时化、标准化是提升效率的关键;生态协同:加入数据要素市场,让更多角色参与,提升交易机会。
原创
博文更新于 23 小时前 ·
465 阅读 ·
19 点赞 ·
0 评论 ·
7 收藏

大数据预测分析:挖掘数据背后的商业逻辑

当企业淹没在“数据洪流”中时,大数据预测分析不是“技术炫技”,而是一把“商业钥匙”——它能从用户行为、市场趋势、供应链数据中挖掘出“未发生的规律”,让企业从“事后救火”转向“事前布局”。零售企业用“天气+促销+历史销量”数据预测奶粉销量,将库存积压率从15%降到3%;制造企业用“设备传感器数据”预测故障,将停机损失减少500万/年。这篇文章不会讲复杂的算法公式,而是用“淘金”类比大数据预测分析的全流程,从“找矿(数据采集)”“选矿(数据清洗)”“炼金(模型训练)”到“卖金(商业应用)”,帮你看懂。
原创
博文更新于 前天 23:40 ·
465 阅读 ·
6 点赞 ·
0 评论 ·
17 收藏

数据即服务在大数据领域的应用前景

本文从第一性原理出发,深度剖析DaaS的核心价值——通过将数据包装为可发现、可信任、可互联且自带治理的“产品”,彻底解决传统集中式数据平台(如数据湖、数据仓库)的固有瓶颈。文章将进一步阐述DaaS在金融、医疗、物联网等领域的落地应用,并最终对其未来的发展轨迹、所面临的挑战及更广阔的应用前景进行战略性展望。DaaS的终极愿景是让数据像电力一样,成为一种可靠、易用、按需取用的公用事业服务,赋能每一个员工和每一个应用,最终释放数据的全部潜在价值。好的,请看这篇关于“数据即服务在大数据领域的应用前景”的技术博客。
原创
博文更新于 前天 20:29 ·
595 阅读 ·
13 点赞 ·
0 评论 ·
9 收藏

大数据领域 OLAP 的维度建模与业务需求匹配

在大数据时代,企业积累了海量的数据,如何从这些数据中提取有价值的信息,为决策提供支持,是企业面临的重要挑战。OLAP(Online Analytical Processing,联机分析处理)作为一种强大的数据分析工具,能够对多维度的数据进行快速分析和查询。而维度建模是 OLAP 系统中数据组织和存储的重要方法,它直接影响着 OLAP 系统的性能和分析效果。本文章的目的在于深入探讨如何将 OLAP 的维度建模与业务需求进行有效匹配,以提高数据分析的效率和质量。
原创
博文更新于 前天 17:46 ·
443 阅读 ·
16 点赞 ·
0 评论 ·
8 收藏

提示工程架构师拆解:Agentic AI跨界电商的3个成功案例(含prompt细节)

本文聚焦于提示工程架构师视角,深入拆解Agentic AI在跨界电商领域的三个成功案例,并详细披露其中的prompt细节。首先介绍提示工程架构师及Agentic AI的相关概念和背景,接着通过三个具体案例展示Agentic AI如何助力跨界电商取得成功,包括案例的业务背景、目标设定、prompt设计思路及具体内容、实施过程和最终取得的成效。旨在为相关从业者提供实际可借鉴的经验和深入的技术分析,揭示Agentic AI在跨界电商领域的巨大潜力和应用方法。
原创
博文更新于 前天 14:36 ·
645 阅读 ·
6 点赞 ·
0 评论 ·
16 收藏

大数据领域Kafka的跨数据中心复制方案

在当今的大数据环境中,企业的数据往往分布在多个数据中心。这些数据中心可能位于不同的地理位置,以满足不同地区用户的需求,或者为了实现数据的备份和灾难恢复。Kafka作为一个高性能、分布式的消息队列系统,在多个数据中心之间进行数据复制变得十分必要。本文的目的在于深入探讨Kafka的跨数据中心复制方案,包括各种复制策略、技术实现和实际应用。范围涵盖了Kafka的基本概念、跨数据中心复制的原理、常见的复制工具和方法,以及如何在实际项目中应用这些方案。
原创
博文更新于 前天 11:25 ·
702 阅读 ·
11 点赞 ·
0 评论 ·
16 收藏

深入研究大数据领域Hadoop的分布式计算效率提升

在当今大数据时代,数据量呈现爆炸式增长,传统的数据处理方式已经难以满足对海量数据进行高效处理和分析的需求。Hadoop作为一个开源的分布式计算平台,凭借其高可扩展性、容错性等特点,成为了大数据处理领域的主流技术。然而,随着数据规模的不断增大,Hadoop分布式计算的效率问题逐渐凸显。本研究的目的在于深入探讨如何提升Hadoop分布式计算的效率,通过对Hadoop的核心原理、算法和架构进行分析,找出影响计算效率的关键因素,并提出相应的解决方案。
原创
博文更新于 前天 08:14 ·
674 阅读 ·
4 点赞 ·
0 评论 ·
24 收藏

数据挖掘实战:用Python进行客户流失预测

想象一下,你经营着一家颇具规模的线上商店,每天都有大量顾客光顾。然而,最近你发现,尽管新客户不断涌入,但老客户的回头率却在逐渐下降。这就好比一个装满水的桶,一边在加水,另一边却在漏水,长此以往,桶里的水迟早会流光。客户流失就如同这桶上的漏洞,悄无声息地侵蚀着企业的利润和发展潜力。在当今竞争激烈的商业环境中,客户就是企业的生命线。获取新客户的成本往往比留住老客户高得多,所以预测并防止客户流失对于企业的可持续发展至关重要。
原创
博文更新于 2025.12.17 ·
583 阅读 ·
23 点赞 ·
0 评论 ·
6 收藏

Flink在大数据领域的机器学习应用实践

在当今大数据时代,数据量呈现爆炸式增长,传统的数据分析和处理方法已难以满足实时性和高效性的需求。机器学习作为挖掘数据价值的重要手段,需要处理大规模、高速度、多样化的数据。Flink作为一个开源的流处理框架,具有低延迟、高吞吐量和容错性等特点,为大数据环境下的机器学习提供了强大的支持。本文的目的是深入探讨Flink在大数据领域的机器学习应用实践,涵盖从核心概念到实际项目的各个方面。范围包括Flink的基本原理、用于机器学习的核心算法、数学模型、实际应用场景以及相关工具和资源的推荐等。
原创
博文更新于 2025.12.17 ·
726 阅读 ·
14 点赞 ·
0 评论 ·
18 收藏

在大数据领域运用 RabbitMQ 构建分布式系统

在当今大数据时代,数据量呈现爆炸式增长,传统的集中式系统难以应对如此庞大的数据处理需求。分布式系统通过将任务分配到多个节点上并行处理,能够显著提高数据处理效率和系统的可扩展性。RabbitMQ 作为一个功能强大的消息队列中间件,在分布式系统中扮演着重要的角色。本文的目的是深入探讨如何在大数据领域运用 RabbitMQ 构建分布式系统,涵盖从基本概念到实际应用的各个方面,包括核心算法原理、数学模型、项目实战等内容。
原创
博文更新于 2025.12.17 ·
327 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

Hadoop实时数据处理:Flume+Kafka+Storm整合方案

在当今数字化时代,数据量呈现爆炸式增长,很多场景都需要对数据进行实时处理,比如电商平台的实时销售数据监控、金融市场的实时交易分析等。我们这篇文章的目的就是介绍一种基于Hadoop生态系统的实时数据处理方案,也就是把Flume、Kafka和Storm这三个组件整合起来使用。范围涵盖了这三个组件的基本概念、它们之间的协作原理、具体的代码实现以及实际应用场景等方面。本文首先会解释Flume、Kafka和Storm这三个核心组件的概念,以及它们之间的关系。
原创
博文更新于 2025.12.17 ·
932 阅读 ·
11 点赞 ·
0 评论 ·
21 收藏

HBase最佳实践:来自生产环境的经验分享

HBase作为Hadoop生态中高并发、海量数据存储的核心组件,被广泛应用于电商订单、物流轨迹、社交动态等场景。但从测试环境到生产环境的迁移,往往会遇到Region热点、性能瓶颈、数据一致性等问题。本文结合多个生产环境案例,从集群部署、数据建模、性能调优、运维监控四大维度,分享10个关键经验,帮你避开HBase生产环境的“坑”,实现集群的高可用与高性能。HBase是一个列式存储、分布式NoSQL数据库海量数据存储:单表可存储PB级数据;高并发读写:每秒处理百万级Put/Get请求;强一致性。
原创
博文更新于 2025.12.17 ·
369 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

大数据领域的MongoDB文档数据库

数据建模:根据场景选择嵌入式或引用式,避免过度嵌入式;分片键选择:选基数高、分布均匀的字段(如user_id索引策略:只建立常用查询的索引,用复合索引优化多条件查询;聚合管道:用聚合管道代替复杂查询,避免JOIN;预聚合:对于频繁查询的统计数据,用预聚合提高查询速度;监控与优化:用MongoDB Atlas的监控工具(如)查看性能瓶颈,定期优化。
原创
博文更新于 2025.12.17 ·
605 阅读 ·
21 点赞 ·
0 评论 ·
15 收藏

大数据领域 Eureka 服务的性能瓶颈分析与突破

随着大数据技术的迅猛发展,企业的业务系统越来越复杂,微服务架构成为了构建大规模分布式系统的主流选择。Eureka 作为一种常用的服务发现机制,为微服务之间的相互调用提供了便利。然而,在大数据场景下,大量的服务实例注册、心跳检测和服务查询等操作给 Eureka 带来了巨大的性能压力。本文的目的在于全面分析 Eureka 服务在大数据环境下的性能瓶颈,并提出有效的突破方案。范围涵盖 Eureka 的核心原理、性能瓶颈的具体表现和成因,以及针对不同瓶颈的优化策略和实际应用案例。
原创
博文更新于 2025.12.16 ·
851 阅读 ·
8 点赞 ·
0 评论 ·
22 收藏

行式存储:大数据领域的高效解决方案

本文旨在介绍行式存储技术在大数据领域的应用。范围包括:定义行式存储及其原理;解释它在数据库(如MySQL)和大数据框架(如Spark)中的作用;分析其优缺点;并通过代码案例展示实现方法。目标是帮助读者掌握选择存储模型的基础知识,避免过度技术化。背景介绍:设定范围和术语。核心概念与联系:用故事比喻解释行式存储,涉及原理和流程图。核心算法原理:用Python代码详解算法,数学公式分析性能。项目实战:实际代码案例开发行式存储模拟器。实际应用场景:真实世界例子。工具和资源推荐:推荐实用工具。
原创
博文更新于 2025.12.16 ·
532 阅读 ·
11 点赞 ·
0 评论 ·
17 收藏
加载更多