大模型玩家
码龄2年
求更新 关注
提问 私信
  • 博客:2,764,878
    2,764,878
    总访问量
  • 2,084
    原创
  • 333
    排名
  • 14,325
    粉丝
  • 1
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
加入CSDN时间: 2024-05-29
博客简介:

2401_85375186的博客

查看详细资料
个人成就
  • 获得42,566次点赞
  • 内容获得58次评论
  • 获得40,191次收藏
  • 代码片获得10,521次分享
  • 原力等级
    原力等级
    9
    原力分
    9,242
    本月获得
    314
创作历程
  • 1166篇
    2025年
  • 920篇
    2024年
成就勋章

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

TA的推广
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络tensorflow数据分析
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

32人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

【必学收藏】用普通电脑微调嵌入模型!LlamaIndex Adapter技术让BGE/OpenAI等模型适配你的专业领域,无需16GB+显存

本文介绍LlamaIndex的Adapter适配器技术高效微调嵌入模型的方法。通过添加轻量级适配器层并冻结原始模型参数,只需普通GPU或CPU即可微调,显存需求降低90%,训练时间大幅缩短,且只需保存几MB的适配器参数。文章详细讲解了环境准备、数据集生成、模型微调、效果评估等步骤,帮助开发者在资源受限环境下提升RAG系统的检索效果。
原创
博文更新于 48 分钟前 ·
427 阅读 ·
0 点赞 ·
0 评论 ·
11 收藏

【深度好文】掌握RAG从搜索开始:大模型检索增强生成的核心组件解析(建议收藏)

RAG是一种解决大模型知识更新不及时、幻觉等问题的方法论,由检索和增强生成两部分组成。搜索技术作为RAG的核心组件,直接影响上下文质量。文章介绍了多种搜索技术,包括字符匹配、分词技术、语义相似度检索等,并针对不同场景(如表数据)提供了相应的检索解决方案,强调了高质量搜索对提升大模型生成内容的关键作用。
原创
博文更新于 54 分钟前 ·
361 阅读 ·
16 点赞 ·
0 评论 ·
4 收藏

收藏!大语言模型训练三阶段详解:从预测模型到智能助手

本文将大语言模型训练类比人类学习知识,分为三步:预训练从互联网获取信息训练预测模型;监督微调通过问答数据训练回答能力;强化学习让模型自行探索最佳解法,产生思维链。大模型本质是统计学预测模型,通过进化发展多模态能力,引发对人类逻辑本质的思考。
原创
博文更新于 58 分钟前 ·
114 阅读 ·
2 点赞 ·
0 评论 ·
9 收藏

必学收藏!从RAG到AI记忆:大模型技术演进与工程师8大核心技能全攻略

本文解析了AI技术从RAG到智能体行动型RAG再到AI记忆的演进历程,展示了AI记忆如何让AI从静态工具变为自适应伙伴,并详细介绍了AI工程师必备的8项核心技能,包括提示词工程、模型微调、RAG系统搭建等,帮助开发者构建更智能、个性化的AI应用。
原创
博文更新于 1 小时前 ·
493 阅读 ·
15 点赞 ·
0 评论 ·
6 收藏

【必收藏】从人类记忆到AI革命:解锁大语言模型的“类人情景记忆“新架构

文章探讨了如何借鉴人类"情景记忆"系统改进AI记忆架构,指出当前AI与人类记忆在动态更新、事件分割、选择性等五大关键差异。作者提出应引入"门控机制"和基于"惊奇度"而非固定长度切分记忆,设计新评估范式测试AI是否拥有"类人记忆"。未来AI将向生物启发方向发展,实现多模态记忆和离线学习,使AI不仅"检索"过去,更能"理解"时间。
原创
博文更新于 前天 10:24 ·
521 阅读 ·
14 点赞 ·
0 评论 ·
9 收藏

收藏必看:大语言模型的6大局限性:从幻觉到多模态,一篇读懂LLM的边界

这篇文章系统综述了大语言模型的六大根本局限性:1)模型幻觉,数学上不可避免且受数据质量问题影响;2)上下文局限,实际有效使用长度远低于名义长度;3)推理能力不足,本质是"填空机器"而非真正推理;4)RAG系统的相关性-覆盖两难及数据污染问题;5)多模态融合中的文本主导地位和信息瓶颈;6)评估基准的数据污染和评估缺陷。文章指出这些局限植根于模型结构和训练范式,部分可通过新架构缓解。
原创
博文更新于 前天 10:19 ·
830 阅读 ·
12 点赞 ·
0 评论 ·
9 收藏

【珍藏干货】GraphRAG:解决传统RAG三大缺陷,大模型问答准确率提升108%的秘诀

GraphRAG作为传统向量RAG的升级方案,通过三层关键技术(实体解析、图构建、社区发现)解决了三大核心缺陷:多跳推理失效、实体消歧不足和主题级问题处理能力弱。生产实践显示,GraphRAG将复杂多跳问题准确率从43%提升至91%,降低97%查询成本,特别适用于金融、医疗等高风险领域。文章提供了完整工程实现方案和成本效益分析,强调GraphRAG不是银弹,而是针对特定复杂场景的必要解决方案。
原创
博文更新于 前天 10:14 ·
581 阅读 ·
7 点赞 ·
0 评论 ·
13 收藏

大模型Agent面试宝典:安全与合规15道高频题,建议收藏!

本文精选15道大模型Agent安全与合规高频面试题,涵盖隐私保护、数据治理、合规要求、伦理问题、偏见处理、可解释性、透明度、审计机制、安全控制和安全运维等核心知识点。从理论到实践,深入浅出解析Agent安全体系构建方法,包括数据加密、访问控制、安全监控、应急响应等关键技术,为求职者提供全面的面试准备指南,助你轻松应对大模型应用岗位安全相关面试问题。
原创
博文更新于 前天 10:09 ·
914 阅读 ·
9 点赞 ·
0 评论 ·
10 收藏

大模型开发者必读:Prompt工程的极限与模型训练的核心价值(建议收藏)

文章从底层视角解析了大模型中Prompt工程与模型训练的本质区别。Prompt工程通过重构输入引导固定模型参数,而训练将外部知识编码进模型参数,实现知识记忆、表示学习和元学习能力三层能力。Prompt受限于上下文窗口和可压缩性,无法替代训练在解决能力缺口、细粒度知识获取及安全合规方面的作用。未来格局将是分层协作:预训练构建基础能力,微调实现领域专精,Prompt工程与RAG等构建应用形态。
原创
博文更新于 前天 10:09 ·
584 阅读 ·
11 点赞 ·
0 评论 ·
10 收藏

【收藏必看】企业级智能体构建全攻略:4大阶段10个步骤详解,从小白到专家

本文详细介绍了构建企业级智能体的完整流程,分为4大阶段:需求分析、体系架构设计、智能体落地与评估、上线运营。通过10个步骤,从明确场景目标到技术PoC验证,再到MVP迭代优化,最终实现持续演进。同时提供AI大模型学习资源,涵盖基础理论到实战应用,适合不同背景人群系统学习大模型技术。
原创
博文更新于 2025.12.17 ·
803 阅读 ·
28 点赞 ·
0 评论 ·
10 收藏

大模型入门必学:指令微调(Instruction Tuning)完全指南,建议收藏!

本文全面介绍大模型指令微调技术,包括从现有数据集、对话数据和合成数据构建指令数据的方法,以及与预训练不同的训练策略。重点详解参数高效微调技术LoRA及其变种(AdaLoRA、QLoRA),帮助开发者降低算力需求。同时提供实战框架选择、实验追踪工具和商业化应用场景,是学习大模型微调技术的实用指南。
原创
博文更新于 2025.12.17 ·
944 阅读 ·
28 点赞 ·
0 评论 ·
21 收藏

2025年抢占先机!AI Agent产品经理实战指南+大模型学习资源(建议收藏)

本文详细介绍了AI Agent产品经理从需求分析到模型优化的全流程能力,以"AI音乐陪练Agent"为案例,展示如何设计有"灵魂"的虚拟老师。文章强调AI Agent产品经理需关注学生坚持练习、教学策略、人格塑造和系统进化,而不仅是技术指标。通过设计Agent动作、提示词、交互规则和安全护栏,创造能自主决策的个性化AI陪练。最后提供大模型学习资源,助力读者抓住AI风口。
原创
博文更新于 2025.12.17 ·
796 阅读 ·
11 点赞 ·
0 评论 ·
11 收藏

【收藏必备】大模型时代AI Agent开发:智能客服实战指南与产品经理工作框架

本文系统介绍AI Agent在智能客服领域的应用,详细阐述"数据-模型-交互"闭环方法论,拆解产品经理工作流程与功能模块设计,包括意图识别、知识库管理、多轮对话等核心组件。通过腾讯云平台实战案例,提供从需求定义到性能调优的完整落地指南,帮助读者掌握构建高效智能客服系统的关键技能。
原创
博文更新于 2025.12.17 ·
992 阅读 ·
19 点赞 ·
0 评论 ·
10 收藏

LLM核心知识:收藏这份大模型底层逻辑与数学原理,从小白到专家

本文深入解析了大语言模型(LLM)的底层逻辑与数学原理,从香农信息论到Transformer架构,详细介绍了分词、嵌入、注意力机制等核心技术,并探讨了梯度下降、反向传播等学习方法。文章展望了多模态、微调、RLHF等未来发展方向,为开发者提供了从理论到实践的完整知识体系,帮助理解LLM的工作原理与应用价值。
原创
博文更新于 2025.12.17 ·
550 阅读 ·
11 点赞 ·
0 评论 ·
27 收藏

程序员必学!RAG技术详解+大模型学习资源全攻略(建议收藏)

文章详细介绍了RAG检索增强生成技术,这是一种结合信息检索与大语言模型生成的框架,通过检索外部知识库辅助LLM生成更准确回答、减少"幻觉"。内容涵盖RAG技术栈(检索层、生成层、辅助层)、核心流程(离线准备和在线服务)及优化方法。同时提供大模型学习资源和路径,帮助读者掌握从理论到实战的AI大模型技术,包括RAG开发、Agent设计、模型微调等关键技能。
原创
博文更新于 2025.12.17 ·
853 阅读 ·
9 点赞 ·
0 评论 ·
19 收藏

程序员必备技能:大模型时代,一文搞懂向量检索原理与实战(建议收藏)

文章以通俗易懂的方式解释了向量检索在大模型时代的重要性,分析了暴力搜索的性能局限,并详细介绍了HNSW、IVF、PQ等主流ANN算法的工作原理。通过类比方式让零基础的读者理解这些技术如何实现"快速找相似"的目标。强调理解底层原理是正确使用向量数据库、构建高效大模型应用的关键。
原创
博文更新于 2025.12.16 ·
1057 阅读 ·
25 点赞 ·
0 评论 ·
7 收藏

【必学收藏】AI智能体架构全解析:从基础到高级的实战学习路径

本文介绍了一个全面的AI智能体架构学习项目,提供从基础到高级的完整学习路径。项目包含5大部分:基础模式、多智能体协作、高级记忆与推理、安全可靠性及真实世界交互、学习与适应。每种架构都有详细解释、工作流程、优势劣势和使用场景,并通过可运行的Jupyter Notebook实现端到端代码示例。项目旨在帮助开发者和AI爱好者从理论到实践,系统化掌握构建AI智能体的技术和方法。
原创
博文更新于 2025.12.16 ·
874 阅读 ·
15 点赞 ·
0 评论 ·
11 收藏

【必藏】10个顶级AI Agent GitHub仓库,从零基础到生产部署全链路覆盖,小白也能快速上手大模型!

文章分享了作者精选的10个GitHub仓库,涵盖从LLM基础到AI Agent构建与生产部署的全链路学习资源,包括Microsoft的AI Agents for Beginners、Hands-On Large Language Models等项目。作者强调学习AI Agent的最佳方式是动手实践,建议读者Fork这些仓库、运行notebook并修改代码。这些资源既适合初学者入门,也能帮助有经验的开发者提升实战能力,是构建AI Agent的宝贵学习资料。
原创
博文更新于 2025.12.16 ·
921 阅读 ·
36 点赞 ·
0 评论 ·
17 收藏

深度收藏!LLM、VLM、MoE、LAM、SLM:构建AI系统的五大核心架构详解

本文解析了构建下一代AI系统的五大核心架构:LLM提供通用语言能力;VLM打破模态壁垒,实现视觉与语言融合;MoE通过稀疏激活平衡规模与效率;LAM将AI从对话扩展到实际行动;SLM为边缘设备提供轻量级解决方案。这些架构各司其职,构成未来AI系统的混合生态,开发者可据需选择合适技术方案,构建更强大高效的AI应用。
原创
博文更新于 2025.12.16 ·
534 阅读 ·
20 点赞 ·
0 评论 ·
7 收藏

AI智能体开发必备条件:系统化构建大模型应用的完整指南(建议收藏)

本文系统介绍了构建AI智能体的完整流程,包括必备条件(Python编程、机器学习知识、大模型理解等)、智能体用途规划、框架工具选择、架构设计、模型训练微调、决策逻辑实现、记忆与上下文管理、工具API集成、测试评估到最终部署应用。文章提供了从理论到实践的全面指南,帮助开发者掌握构建高效AI智能体的核心技能,适合对大模型应用感兴趣的程序员学习参考。
原创
博文更新于 2025.12.16 ·
688 阅读 ·
30 点赞 ·
0 评论 ·
20 收藏
加载更多