人工智能通识课体验大语言模型

序号

考察能力

题目

回复

评价

1

逻辑推理

一个人带一只黄狗、一只白兔和一颗白菜过河,河边只有一条小船,此人每次只能带一样东西过河,如果此人不在,黄狗要咬白兔,白兔要啃白菜。请想一想:既不让黄狗咬白兔,又不让白兔啃白菜,该怎么设计过河方案

豆包大模型:要解决这个问题,核心是始终让黄狗和白兔、白兔和白菜在无人看管时处于河的两岸,具体过河方案分 7 步:

人先带着白兔过河,到达对岸后,人独自划船返回。

(此时:对岸只有白兔;出发岸有黄狗、白菜、人)

人带着黄狗过河,到达对岸后,人带着白兔划船返回。

(此时:对岸只有黄狗;出发岸有白兔、白菜、人,避免黄狗咬白兔)

人放下白兔,带着白菜过河,到达对岸后,人独自划船返回。

(此时:对岸有黄狗和白菜,两者互不干扰;出发岸有白兔、人)

人最后带着白兔过河。

(此时:人、黄狗、白兔、白菜全部安全到达对岸)

这个方案的关键在于用白兔作为 “中间转移物”,两次往返运输,避免危险组合独处。

文心一言大模型:要解决这个问题,需确保任何时候黄狗和白兔、白兔和白菜不会单独留在一起。以下是分步过河方案:

第一步:带白兔过河

初始状态:起点(人、黄狗、白兔、白菜),对岸(空)。

行动:人带白兔到对岸。

结果:起点(黄狗、白菜),对岸(人、白兔)。

验证:起点黄狗和白菜无冲突,对岸有人看管白兔,安全。

第二步:人单独返回起点

行动:人划船回到起点。

结果:起点(人、黄狗、白菜),对岸(白兔)。

验证:对岸只有白兔,无冲突;起点人可控制黄狗和白菜。

第三步:带黄狗过河

行动:人带黄狗到对岸。

结果:起点(白菜),对岸(人、黄狗、白兔)。

验证:若人离开,黄狗会咬白兔,因此需立即调整。

第四步:带白兔返回起点

行动:人带白兔返回起点。

结果:起点(人、白兔、白菜),对岸(黄狗)。

验证:对岸只有黄狗,安全;起点人可同时看管白兔和白菜。

第五步:带白菜过河

行动:人带白菜到对岸。

结果:起点(白兔),对岸(人、黄狗、白菜)。

验证:对岸黄狗和白菜无冲突,安全;起点只有白兔,无冲突。

第六步:人单独返回起点

行动:人划船回到起点。

结果:起点(人、白兔),对岸(黄狗、白菜)。

验证:对岸黄狗和白菜无冲突,安全;起点人可看管白兔。

第七步:带白兔过河

行动:人带白兔到对岸。

结果:起点(空),对岸(人、黄狗、白兔、白菜)。

验证:所有物品安全抵达对岸,无冲突。

通过以上步骤,所有物品均安全过河,且未发生任何冲突。

你认为使用的大语言模型的本项能力是:优秀、良好、合格、不合格

豆包大模型:优秀

文心一言大模型:优秀

2

总结归纳

我家的猫叫花咪咪,我家的狗叫黄旺旺,请问我家的羊叫什么

豆包大模型:哈哈,这题是个小陷阱呀!

从你给的名字规律来看,猫叫花咪咪(花色 + 叫声),狗叫黄旺旺(毛色 + 叫声),那羊的名字大概率就是 **[毛色] 咩咩 ** 啦。

如果按这个逻辑顺下来,要是你的羊没有特别的毛色,也可以直接叫咩咩哦~

文心一言大模型:根据题目提供的信息,目前只知道您家的猫叫“花咪咪”,狗叫“黄旺旺”,但并没有提到关于羊的名字的任何线索。因此,无法直接通过题目中的信息得出羊的名字。

如果这是一个需要逻辑推理或脑筋急转弯的题目,可能需要更多上下文或隐藏的线索(例如谐音、字形联想等)。但基于现有内容,羊的名字无法确定。

豆包大模型:优秀

文心一言大模型:合格

3

计算能力

753×951=?

豆包大模型:753×951=716103

计算步骤参考:

拆分乘数:

951=900+50+1

分别相乘:

753×900=677700

753×50=37650

753×1=753

求和:

677700+37650+753=716103

文心一言大模型:753×951的计算结果为716,103。以下是验证步骤:

分解计算

753 × 900 = 677,700

753 × 50 = 37,650

753 × 1 = 753

相加:677,700 + 37,650 = 715,350 → 715,350 + 753 = 716,103

豆包大模型:优秀

文心一言大模型:优秀

4

历史知识

“五代十国”包括哪些朝代

豆包大模型:五代十国是唐朝灭亡后,中国中原地区和南方、边缘地区先后出现的割据政权的合称,时间范围大致是公元 907 年 —979 年。其中五代是中原地区依次更替的五个正统王朝,十国是并存的十个主要割据政权。

一、 五代(中原正统王朝,依次更替)

这五个政权都位于黄河流域的中原核心地带,且是前后相继的关系,它们的国号多沿用之前的朝代名称,具体如下:

后梁(907 年 —923 年):由朱温建立,取代唐朝,定都开封。

后唐(923 年 —936 年):由李存勖建立,定都洛阳,统治者为沙陀族。

后晋(936 年 —947 年):由石敬瑭建立,因割让燕云十六州给契丹,被后世诟病。

后汉(947 年 —950 年):由刘知远建立,是五代中存在时间最短的王朝。

后周(951 年 —960 年):由郭威建立,柴荣在位时国力大幅提升,为后来北宋统一奠定基础,最终被赵匡胤发动陈桥兵变取代。

二、 十国(中原以外的割据政权,多与五代并存)

这十个政权主要分布在南方地区,也包含北方的一个割据政权,它们之间并非依次更替,而是同时或先后并存,具体如下:

吴国(892 年 —937 年):南方割据政权的开端,定都广陵(今江苏扬州)。

南唐(937 年 —975 年):取代吴国,国力强盛,疆域较大,李煜是其末代君主,以诗词闻名。

吴越(907 年 —978 年):定都杭州,统治者钱镠,政局稳定,经济发达。

闽国(909 年 —945 年):定都长乐(今福建福州),地处东南沿海。

南楚(907 年 —951 年):定都长沙,位于今湖南一带。

南汉(917 年 —971 年):定都兴王府(今广东广州),统治今广东、广西等地。

南平(924 年 —963 年):又称荆南,定都荆州,疆域狭小,是十国中最小的政权。

前蜀(907 年 —925 年):定都成都,统治今四川、重庆一带,经济繁荣。

后蜀(934 年 —965 年):取代前蜀,同样定都成都,末代君主孟昶,后被北宋所灭。

北汉(951 年 —979 年):十国中唯一位于北方的政权,定都太原,依附于契丹,是最后一个被北宋消灭的割据政权。

文心一言大模型:“五代十国”是中国历史上的一段大分裂时期,“五代”指中原地区依次更替的五个政权,即后梁、后唐、后晋、后汉、后周;“十国”指南方及北方的十个割据政权,即前蜀、后蜀、南吴、南唐、吴越、闽国、南楚、南汉、南平(荆南)、北汉。具体介绍如下:

五代

后梁:907年,朱温篡唐建立后梁,定都开封府(今河南开封),五代十国开始。后梁建立后,与割据山西的晋王李克用争夺霸权,双方互有胜负。923年,后唐军队攻入都城开封,后梁灭亡。

后唐:923年,李存勖灭后梁,建立后唐,定都洛阳。后唐国力强盛,但两次发生内乱,被石敬瑭引契丹军攻灭,后晋建立。

后晋:936年,石敬瑭借契丹兵灭唐,建立后晋,割让燕云十六州给契丹。不久,契丹军南下灭后晋。

后汉:947年,刘知远在太原建立后汉,收复中原。刘知远死后,郭威篡后汉建后周。

后周:951年,郭威建立后周,定都开封。后周世宗柴荣改革图治,为北宋统一奠定基础。960年,后周被赵匡胤所篡,五代结束。

十国

前蜀:907年,唐壁州刺史王建在成都称帝,国号蜀,史称前蜀。925年,后唐庄宗派兵灭前蜀。

后蜀:934年,孟知祥在成都称帝,国号蜀,史称后蜀。965年,为北宋所灭。

南吴:892年,杨行密被封为淮南节度使,902年被封为吴王,建都扬州。937年,徐温的养子徐知诰废杨溥自立,国号唐,建都金陵,改姓名为李昪,史称南唐。

南唐:南唐由李昪建立,都金陵(今江苏南京)。南唐国力最强,先后攻灭闽国、楚国,但多次用兵使得国力衰退,最后败于后周。975年,为北宋所灭。

吴越:893年,钱镠被唐昭宗任命为镇海节度使。907年,后梁封他为吴越王,都于杭州。吴越拥有两浙之地,战争很少,生产发达,经济繁荣。978年,降北宋。

闽国:893年,王审知随其兄王潮据福州。909年,后梁封他为闽王。945年,被南唐攻灭。

南楚:907年,后梁封马殷为楚王,都于潭州(今湖南长沙)。927年,后唐又封其为楚国王。951年,被南唐攻灭。但南唐灭楚不久,楚将刘言又起兵击败了南唐军,继续据有湖南。963年,为北宋所灭。

南汉:905年,刘隐为唐静海军节度使。南汉君主都极其奢侈,统治十分残暴,境内阶级矛盾非常尖锐。971年,为北宋所灭。

南平(荆南):907年,后梁任命高季兴为荆南节度使。924年,后唐庄宗封他为南平王,都于江陵。南平仅有荆州一地,至唐明宗时才得归、峡二州,是十国中最弱小的一国。963年,亡于北宋。

北汉:951年,郭威代汉。后汉高祖刘知远的弟弟刘崇据河东之地,在太原称帝,仍以汉为国号,史称北汉。北汉依附契丹对抗中原。979年,亡于北宋。

豆包大模型:良好

文心一言大模型:良好

5

历史知识+逻辑推理

刘备怎样才能统一天下

豆包大模型:刘备想要统一天下,需要解决自身核心短板,同时抓住曹魏、东吴的战略破绽,在时机、内政、军事、外交四个维度进行系统性调整,以下是具体可行的策略:

稳住荆州,破解 “双线作战” 困局荆州是刘备集团的战略枢纽,也是孙刘矛盾的核心。关羽失荆州、走麦城是蜀汉由盛转衰的关键。刘备需调整策略:

外交上妥协:明确与孙权划分荆州边界,承诺共抗曹魏后再平分天下,而非强硬占据全部荆州,避免两面树敌。

人事上换将:关羽虽勇猛但刚愎自用,可改派赵云镇守荆州(赵云谨慎稳重,擅长协调关系),让关羽回益州辅佐北伐,集中兵力主攻关中。

军事上联动:荆州驻军以防御为主,与益州形成 “一守一攻” 的配合,不擅自发动襄樊之战,避免在曹魏、东吴都未疲敝时孤军深入。

优化内政,夯实益州根基蜀汉国力最弱,益州是唯一的后方,必须解决 “民穷兵疲” 的问题:

暂缓大规模北伐:诸葛亮后期五次北伐消耗巨大,刘备应先休养生息,推行轻徭薄赋政策,恢复益州因战乱受损的农业和人口,积累粮草、兵员。

平衡派系矛盾:调和 “荆州派”(诸葛亮、关羽)与 “益州本土派”(李严、谯周)的利益,重用本土士族,避免人才流失和内部离心。

完善人才梯队:除了诸葛亮、关羽等核心骨干,需提早培养姜维、霍弋等新生代将领,避免后期 “蜀中无大将” 的窘境。

抓住曹魏内乱时机,精准北伐曹魏的优势是疆域广、人口多,但也存在致命破绽:曹丕、曹叡在位时间短,曹芳时期出现司马懿与曹爽的权力斗争。刘备应耐心等待时机:

主攻关中,而非陇右:效仿刘邦 “暗度陈仓” 的路线,集中主力从汉中出兵攻取关中,占据长安后,以关中为跳板辐射中原,相比诸葛亮攻陇右,这个路线更易直捣曹魏核心。

联合鲜卑,牵制曹魏:曹魏北方有鲜卑轲比能的势力,刘备可派遣使者结盟轲比能,让其在北方袭扰曹魏边境,分散曹魏的军事力量。

分化东吴,避免两线夹击东吴的核心诉求是 “保江东”,而非统一天下,刘备可利用这一点:

明确 “主次敌”:始终向孙权传递 “曹魏是共同敌人” 的信号,承诺灭魏后平分天下,让东吴保持中立,至少不与曹魏联手。

经济结盟:与东吴开展贸易,用益州的蜀锦换取东吴的粮食、盐铁,互利共赢,增强联盟的黏性。

避免夷陵之战:关羽死后,刘备发动夷陵之战是战略失误,损耗蜀汉精锐。此时应忍辱负重,继续联吴,而非与东吴拼消耗。

确立稳定的继承人制度蜀汉后期的皇位传承存在隐患,刘禅能力平庸,刘备应提早培养储君:

若刘禅确实不堪大用,可考虑改立更有才干的儿子(如刘永、刘理),并安排诸葛亮、李严等大臣辅政,明确辅政大臣的权力边界,避免后期权臣独大。

核心逻辑

刘备统一天下的关键,是放弃 “急于复仇” 的情绪化决策,遵循 “联吴、稳蜀、待变、北伐” 的顺序,先解决自身的短板,再抓住对手的破绽。只要能保住荆州、避免夷陵之败,同时等曹魏出现内乱,蜀汉就有机会一步步蚕食曹魏疆域,最终统一天下。

文心一言大模型:刘备若要统一天下,需在战略规划、人才整合、内部治理、外交策略及军事行动等方面综合施策,同时克服地理、资源、对手实力等客观限制。以下从历史条件出发,结合其优势与劣势,提出一套可行的方案:

一、战略核心:以荆州为跳板,夺取益州,形成“跨有荆益”的根基

巩固荆州,避免过早与东吴决裂

外交妥协:在赤壁之战后,与孙权重新划分荆州势力范围,例如以长江为界,南郡、江夏归刘备,长沙、桂阳、零陵归东吴,或通过联姻(如续娶孙权妹)维持联盟。

经济合作:与东吴共同开发荆州南部,利用其农业资源(如洞庭湖平原)和商业网络(如湘江水运),增强经济互补性,减少摩擦。

军事威慑:在荆州部署关羽、张飞等猛将,同时加强水军建设,确保对东吴的防御能力,避免重蹈“大意失荆州”的覆辙。

快速夺取益州,建立稳固后方

利用刘璋矛盾:以“助刘璋防张鲁”为名入川,但避免与刘璋正面冲突,而是通过策反益州内部势力(如法正、张松)和拉拢地方豪强(如东州派)逐步渗透。

分化瓦解:对益州本土派(如谯周、黄权)采取怀柔政策,承诺保障其利益,减少抵抗;对东州派(如李严、孟达)则给予重用,形成利益共同体。

经济整合:将荆州的农业技术(如诸葛亮推广的屯田制)引入益州,同时利用益州的盐铁资源(如临邛铁矿)增强经济实力。

二、人才策略:打破“蜀中无大将”的困局

广纳天下英才,不限地域

突破地域限制:除荆益人才外,积极招揽中原、江东、凉州等地的流亡士人,如庞统、法正、黄权等已归附者需重用,同时通过外交手段吸引曹魏、东吴的失意者(如徐庶、虞翻)。

完善人才选拔机制:设立“举贤良”制度,鼓励地方推荐人才,并建立考核体系,避免任人唯亲。

培养后备力量,解决人才断层

建立军事学院:仿效曹操的“虎豹骑”训练模式,在成都设立军事学府,由赵云、魏延等将领亲自授课,培养年轻军官。

推行科举雏形:在益州试行“策试”制度,选拔文官,打破世家大族垄断仕途的局面。

三、内部治理:以“仁政”凝聚人心,以法治强化效率

经济改革:轻徭薄赋,发展生产

推行“直百钱”:统一货币,稳定物价,促进商业流通。

兴修水利:修复都江堰,开凿新渠道,扩大灌溉面积,提高农业产量。

鼓励工商业:设立“市令”管理市场,减免商税,吸引外来商人,将成都打造为西南经济中心。

法治建设:平衡“仁政”与“法治”

完善《蜀科》:在诸葛亮《蜀科》基础上,结合益州实际制定更细致的法律,明确奖惩标准,避免“法严则民怨,法宽则吏肆”。

设立监察机构:成立“司直”部门,监督官员行为,严惩贪腐,确保政策执行效率。

四、外交策略:分化对手,逐个击破

联吴抗曹:维持表面联盟,暗中积蓄力量

经济捆绑:与东吴共同开发荆州、交州的资源(如南洋贸易),形成利益共同体。

军事威慑:在荆州部署精锐部队,展示实力,迫使孙权在曹魏压力下不敢轻易撕毁联盟。

离间曹魏内部,削弱其统治基础

支持地方叛乱:暗中资助曹魏境内的少数民族(如羌、氐)和流民起义,牵制其兵力。

策反曹魏将领:通过反间计或利益诱惑,争取曹魏边缘将领(如夏侯霸、郭淮)归降。

五、军事行动:以“闪电战”突破僵局

首次北伐:夺取陇右,切断曹魏西线

目标:迅速占领陇西五郡(陇西、南安、天水、广魏、安定),控制祁山要道,阻断曹魏与凉州的联系。

战术:以赵云、邓芝为疑兵出斜谷,吸引曹魏主力;诸葛亮亲率主力出祁山,直取天水,同时策反当地豪强(如姜维)。

后续:在陇右屯田,建立根据地,逐步向东推进。

二次北伐:攻占长安,威胁中原

目标:在陇右稳固后,以姜维为先锋,沿渭水东进,夺取长安,切断曹魏关中与中原的联系。

战术:利用曹魏关中兵力空虚的时机,以骑兵快速突破潼关,同时联络关中百姓起义,形成内外夹击。

最终决战:合围洛阳,统一天下

目标:在占据长安后,分兵两路:一路由诸葛亮率主力东进洛阳;另一路由关羽、张飞(若健在)或魏延率偏师南下,攻占宛城、许昌,威胁曹魏核心区。

战术:利用曹魏内部矛盾(如司马氏与曹氏的权力斗争),策反其将领,同时以“兴复汉室”为口号,争取中原士族支持。

六、关键挑战与应对

东吴背盟:若孙权在北伐时偷袭荆州,需提前在江陵、公安部署重兵,并与东吴达成“北伐期间互不攻击”的协议;若协议失效,则以防守为主,避免两线作战。

曹魏反扑:利用曹魏疆域广阔、调动缓慢的特点,以“攻其必救”战术迫使其分散兵力,再逐个击破。

人才流失:通过封侯、赐爵等物质奖励,以及“兴复汉室”的精神号召,留住核心人才(如诸葛亮、关羽、张飞)。

七、历史假设与局限性

时间窗口:刘备需在诸葛亮《隆中对》提出的“天下有变”时(如曹魏内部叛乱、东吴与曹魏冲突)迅速行动,否则随着对手实力增强,统一难度将大幅上升。

对手实力:曹魏经济、军事实力远超蜀汉,需通过长期消耗战削弱其国力,而非速胜。

地理限制:蜀汉地形易守难攻,但也限制了其扩张速度,需通过外交和战术创新突破地理瓶颈。

结论

刘备统一天下的关键在于:

稳固荆益,避免内耗;

广纳人才,解决断层;

经济法治,凝聚人心;

灵活外交,分化对手;

精准军事,突破僵局。

若能实现上述策略,刘备虽未必能完全复刻刘邦“三年灭秦、四年灭楚”的奇迹,但仍有较大机会在曹魏内部动荡时夺取中原,最终统一天下。

豆包大模型:良好

文心一言大模型:良好

6

创作能力

我是一个科技公司的老板,请帮我设计一份简短的公司年会发言稿,100字以内

豆包大模型:各位同仁,大家好!

回望这一年,我们并肩作战,攻克了一个又一个技术难关,交出了亮眼答卷。新的一年,让我们继续以创新为帆,以实干为桨,乘风破浪,再创佳绩!

谢谢大家!

文心一言大模型:各位伙伴,过去一年我们并肩作战,用创新突破边界,用技术重塑未来,成果斐然!感谢每一位的拼搏与付出!新岁已至,愿我们继续以科技为刃,劈波斩浪,共赴星辰大海,再创辉煌!

豆包大模型:良好

文心一言大模型:良好

7

角色扮演+创作能力

我是一名女学生,身高160cm,体重60kg,平时学习比较紧张,假如你是我的健身教练,请帮忙设计一个每天30min的健身计划

豆包大模型:结合你学生党、时间紧张、身高 160cm 体重 60kg的情况,这份 30 分钟健身计划以轻强度有氧 + 简单力量塑形为主,易执行、不耽误学习,还能缓解久坐疲劳:

每日 30 分钟健身计划

热身(5 分钟)

原地高抬腿 1 分钟 + 开合跳 1 分钟

肩部环绕 1 分钟 + 髋关节绕环 1 分钟

弓步压腿 左右各 30 秒

主体训练(20 分钟)

无跳跃有氧(8 分钟):原地踏步(3 分钟)+ 后踢腿走(3 分钟)+ 侧移步(2 分钟),中等速度,微微出汗即可。

简单力量塑形(12 分钟):

① 靠墙静蹲 3 组 ×30 秒(练腿,改善久坐腿粗)

② 平板支撑 3 组 ×20 秒(练核心,改善驼背)

③ 坐姿举矿泉水瓶(代替哑铃) 3 组 ×15 次 / 侧(练手臂,告别拜拜肉)

组间休息 10 秒

拉伸放松(5 分钟)

大腿前侧拉伸 左右各 30 秒

小腿拉伸 左右各 30 秒

背部拉伸 1 分钟 + 颈部放松 1 分钟

深呼吸调整 1 分钟

文心一言大模型:作为你的健身教练,结合你的身高体重和学习节奏,为你设计这份高效、易坚持的30分钟居家健身计划,兼顾燃脂塑形与压力释放:

每日30分钟健身计划(分阶段进阶)

适用场景:宿舍/家中,无需器械

核心目标:提升体能、改善体态、缓解久坐疲劳

第一阶段:适应期(第1-2周)

总时长:30分钟

流程:

动态热身(5分钟)

开合跳40秒×2组(激活全身)

手臂绕环+侧弓步(左右各15次,放松肩颈与髋关节)

高抬腿慢速版30秒(提升心率)

核心训练(15分钟)

平板支撑:30秒×3组(强化腰腹,注意保持头-背-臀直线)

死虫式:20次×3组(缓解久坐腰酸,仰卧抬腿对侧手触膝)

侧支撑(左右各30秒):锻炼侧腰,改善骨盆稳定

全身燃脂(7分钟)

简易波比跳(无跳跃版):20次×3组(深蹲→俯身撑地→起身站直)

原地慢跑:1分钟×2组(穿插在波比跳间,保持呼吸节奏)

拉伸放松(3分钟)

猫牛式(脊柱灵活):10次

坐姿体前屈(拉伸大腿后侧):30秒

颈部放松(左右缓慢转头):各10秒

第二阶段:提升期(第3-4周)

调整点:增加强度,优化动作组合

热身(5分钟):加入跳绳(无绳版)1分钟×2组

核心+力量(15分钟)

动态平板支撑(交替抬手/抬腿):20次×3组

深蹲跳(轻幅度):15次×3组(强化下肢,注意落地缓冲)

超人式(俯卧抬手腿):15次×3组(改善含胸驼背)

燃脂(7分钟):

开合跳+高抬腿组合:各30秒×3组(穿插10秒休息)

拉伸(3分钟):重点放松小腿(靠墙踮脚尖拉伸)

第三阶段:巩固期(第5周起)

调整点:加入HIIT元素,提升代谢

热身(4分钟):快速原地跑+手臂环绕

HIIT循环(20分钟):

动作1:深蹲→俯身登山(40秒)→休息20秒

动作2:平板支撑开合跳(30秒)→休息30秒

动作3:交替弓步跳(30秒)→休息30秒

循环4组,组间慢走1分钟

拉伸(6分钟):全身放松,重点肩颈与腰部

关键贴士

时间灵活:若某天时间紧张,可拆分为晨间10分钟(核心)+晚间20分钟(燃脂)。

饮食配合:学习间隙吃坚果/酸奶补充能量,避免高糖零食;晚餐后1小时再运动。

恢复优先:若感到疲劳,将HIIT替换为瑜伽或散步,避免过度训练。

体态监测:每月拍一张侧面站立照,观察腰背线条变化,及时调整动作细节。

坚持4周后,你的体能与体态会有明显改善,学习时也会更精力充沛!记得运动后补充水分,期待你的进步~ ��

豆包大模型:良好

文心一言大模型:良好

8

续写

如果由你来续写《红楼梦》的后40回,你会如何设计其中的情节?请用100字以内的篇幅概括

豆包大模型:抄家后贾府分崩离析,黛玉忧思成疾,临终焚稿断痴情。宝玉守丧时见众生相,终悟盛衰皆空。宝钗独撑残局却难挽颓势,惜春出家,探春远嫁。宝玉在雪夜拜别宗祠,随一僧一道而去,只留白茫茫大地真干净

文心一言大模型:宝玉历经家族败落、挚爱离散后顿悟尘缘,披袈裟遁入空门;宝钗独守空闺,以诗书自遣,终因忧思成疾;探春远嫁后助夫平乱,封诰命却难回故土;湘云沦为歌伎,与宝玉重逢于渡口,一笑泯恩仇,各自飘零向天涯

豆包大模型:良好

文心一言大模型:良好

9

伦理问题

一列火车正常行驶,前方轨道上有5个小孩在玩耍,而另一条废弃轨道上有一个小孩。如果你是火车司机,突然发现制动失灵,你会变更轨道吗

豆包大模型:这是一个经典的伦理困境题,核心矛盾是 “牺牲少数人拯救多数人” 与 “尊重个体生命、不主动制造伤害” 的冲突,无论选择哪一种都有争议:

选择变道:看似符合 “功利主义”,用 1 条生命换 5 条生命,能减少整体伤亡。但废弃轨道上的孩子本身没有过错(遵守了规则),主动变道相当于把原本与他无关的危险强加于他,是对 “遵守规则者” 的不公。

选择不变道:是遵守既定轨道的 “程序正义”,司机没有主动干预去剥夺无辜者的生命,但代价是 5 个孩子的伤亡,情感上难以接受。

现实中,作为火车司机,首要职责是按既定轨道行驶并尽最大努力呼救示警,而非主动变更轨道 —— 因为轨道的废弃与否、是否具备行车安全条件都是未知的,随意变道可能引发更严重的脱轨事故,造成更多人伤亡。

文心一言大模型:这是一个涉及伦理困境的经典问题,核心在于面对不同生命数量与道德规则的冲突时如何抉择。解题关键在于权衡功利主义(追求最大多数人的利益)和道德义务(遵守规则、不主动伤害无辜)这两种伦理原则。

从功利主义视角看,若选择变道到废弃轨道,牺牲1人可拯救5人,能实现生命数量的最大化,减少整体伤亡,看似是更理性的选择。然而,这种选择存在严重问题。废弃轨道意味着该轨道默认没有列车通行,那个小孩处于安全状态,司机若主动变道,就打破了这种安全预期,将无辜的小孩置于危险之中,这是主动实施伤害行为。

从道德义务角度出发,司机有责任保障列车在正常轨道安全行驶,轨道的使用规则是保障安全的重要基础。变更轨道违背了这一规则,即便结果是拯救了更多人,但主动改变轨道去伤害一个本不应受到伤害的人,在道德上难以被完全接受。而且这种行为可能会引发不良后果,比如破坏人们对轨道安全规则的信任,未来可能有人因预期列车会变道而更随意地出现在废弃轨道上,从而引发更多危险。

综合来看,虽然从生命数量结果上变道似乎更优,但主动变更轨道违背了不伤害无辜者的道德底线。所以,不应变更轨道,应坚守正常轨道,同时尽力采取其他可能的紧急措施,如拉响警报、尝试其他制动方式等,以降低事故的严重性。这一困境凸显了伦理决策的复杂性,没有绝对正确的答案,但坚守道德原则是至关重要的。

豆包大模型:良好

文心一言大模型:良好

10

记忆能力

最近24h内,我提了几个问题?其中有几个关于历史的问题

豆包大模型:最近 24 小时内你共提了6 个问题,其中关于历史的问题有2 个:分别是 “刘备怎样才能统一天下” 和 “如果由你来续写《红楼梦》的后 40 回,你会如何设计其中的情节?”。

文心一言大模型:目前我这边没办法直接统计你最近24小时提问的数量以及其中历史类问题的具体个数呢。不过你可以自己回顾一下和我的对话记录,数一数总提问数,再从中挑出涉及历史事件、人物、时期等历史相关的问题,这样就能得到答案啦。你愿意和我说说大致都问了些什么方面的问题不?

豆包大模型:良好

文心一言大模型:良好

11

简单比大小

数字9.11和9.9哪个大

豆包大模型:比较小数的大小,遵循先比整数部分,再比小数部分的规则:

9.11 和 9.9 的整数部分都是 9,相等;

接着比较十分位:9.11 的十分位是 1,9.9 的十分位是 9;

因为

9>1

,所以 9.9 > 9.11。

文心一言大模型:比较两个小数大小,先看整数部分,整数部分大的数大。9.11和9.9整数部分都是9,一样大;再看十分位,9.11十分位是1,9.9十分位是9,因为9>1,所以9.9>9.11 。

豆包大模型:良好

文心一言大模型:优秀

序号1-11是纯文本任务

序号

考察能力

题目

回复

评价

12

平面设计

请设计一个科技公司的Logo,要求扁平化风格,构图简洁明了

豆包大模型:

文心一言大模型:

你认为使用的大语言模型的本项能力是:优秀、良好、合格、不合格

豆包大模型:

文心一言大模型:

13

文生图

请生成一张名为“花丛中的女孩”的图像:明媚的阳光下,一个身穿白裙子的女孩站在花丛中

豆包大模型:

文心一言大模型:

豆包大模型:

文心一言大模型:

14

图像识别

请识别图像中的景点

豆包大模型:这个景点是广州白云山风景区的 “云潺” 瀑布。

从图像中的 “云潺” 石刻、山石瀑布与茂密绿植的组合,结合搜索信息可以确定:它位于广州白云山的山顶广场附近(属于鸣春谷景区),是白云山的标志性景观之一,以 “泉水如白云般纯净、如丝绸般细腻” 的意境得名,也是游客常打卡的景点之一。

文心一言大模型:图中展示的是一处自然景观,有瀑布、岩石、绿植等。画面左侧的岩石上刻有红色的“雲潺”字样。从图片中的文字和景观特征来看,该景点可能为广州白云山的云潺景点(也叫“云岩”),但仅凭此图不能100%确定,你也可以向我提供更多信息以便进一步分析。

豆包大模型:

文心一言大模型:

15

图像识别

上传一张迈克尔·乔丹的图像,请大语言模型识别其中是谁

豆包大模型:这是迈克尔・乔丹(Michael Jordan),图中他身穿芝加哥公牛队的 23 号红色球衣,搭配经典的黑红配色 Air Jordan 1 球鞋,是他早期生涯的标志性形象之一。

乔丹是公认的 “篮球之神”,曾带领公牛队 6 次夺得 NBA 总冠军,10 次斩获得分王,是 NBA 历史上最具影响力的球员之一。

文心一言大模型:图中人物是迈克尔·乔丹(Michael Jordan)。他是美国NBA著名篮球运动员,司职得分后卫,被广泛认为是篮球史上最伟大的球员之一。他以其卓越的得分能力、竞技精神和对篮球运动的推广而闻名,曾率领芝加哥公牛队六次夺得NBA总冠军,并五次获得NBA最有价值球员(MVP)称号。

豆包大模型:

文心一言大模型:

16

图像识别

请识别图像中有几个人,他们在干什么

豆包大模型:图像里有 9 个人(5 男 4 女),他们正聚在一起拍合影:有人比出点赞手势,前排两位女生还一起比了爱心造型,整体氛围轻松愉快,像是在记录聚会或活动的时刻。

文心一言大模型:图中有十个人,他们面带笑容,姿态各异,有的比心,有的竖起大拇指,似乎是在庆祝某个时刻或活动,整体氛围轻松愉快。背景墙上挂满了照片,可能是他们的合影或具有纪念意义的瞬间,进一步烘托出欢乐和温馨的氛围。

豆包大模型:

文心一言大模型:

17

图像识别

请识别图像中人物的表情,分析其此刻的心情

豆包大模型:图像中人物呈现的是灿烂的笑容,嘴角明显上扬、露出了牙齿,眼神明亮放松,这些表情细节都传递出她此刻处于愉悦、轻松、积极的心情状态,看起来是比较开心、舒适的。

文心一言大模型:图中人物嘴角上扬,露出洁白的牙齿,眼睛明亮且微微弯起,是典型的笑容特征,展现出开心、愉悦的心情。她的整体表情自然且放松,给人一种亲切、友好的感觉,似乎正处于积极、舒畅的情绪状态中。

豆包大模型:

文心一言大模型:

18

图像识别

请识别图像中人物的大概年龄

豆包大模型:从人物的外貌状态(皮肤状态、神态气质)来看,她的大概年龄在20 岁到 25 岁左右,属于年轻女性的阶段。

文心一言大模型:图中人物面容姣好,皮肤紧致光滑,眼神清澈明亮且充满活力,胶原蛋白满满,呈现出青春靓丽的状态,据此推测其年龄大概在20至25岁之间。不过,年龄的推测受多种因素影响,可能存在一定误差。

豆包大模型:

文心一言大模型:

19

图像识别+数学能力

准备一张包含初中数学题的图像,请大语言模型求解,并给出求解的过程

豆包大模型:我来帮你逐一解答这些题目,过程会尽量清晰~ ### 8题:判断偶函数 根据定义:**任意两点\((x_1,y_1)\)、\((x_2,y_2)\),当\(x_1=-x_2\)时,\(y_1=y_2\)**(即关于y轴对称)。 - A. \(y=4x\):\(x=1\)时\(y=4\),\(x=-1\)时\(y=-4\),\(y_1≠y_2\),不是; - B. \(y=-x+2\):\(x=1\)时\(y=1\),\(x=-1\)时\(y=3\),\(y_1≠y_2\),不是; - C. \(y=-3x^2\):\(x=a\)时\(y=-3a^2\),\(x=-a\)时\(y=-3(-a)^2=-3a^2\),\(y_1=y_2\),是; - D. \(y=-\frac{2}{x}\):\(x=1\)时\(y=-2\),\(x=-1\)时\(y=2\),\(y_1≠y_2\),不是。 答案:\(\boxed{C}\) ### 9题:直角三角形的运动时间 已知\(AC\)是直径,故\(\angle ABC=90^\circ\)(直径所对圆周角为直角),由\(BC=6\)、\(AB=8\),得\(AC=10\)(勾股定理)。 设运动时间为\(t\),则: - 点\(M\)从\(C\)出发,速度\(2\,\text{cm/s}\),\(CM=2t\),\(AM=AC - CM=10-2t\); - 点\(N\)从\(A\)出发,速度\(1\,\text{cm/s}\),\(AN=t\)。 \(\triangle AMN\)为直角三角形,分**两种情况**: 1. \(\angle ANM=90^\circ\): 此时\(\triangle ANM \sim \triangle ABC\)(两角相等),故\(\frac{AN}{AB}=\frac{AM}{AC}\),即: \[ \frac{t}{8}=\frac{10-2t}{10} \implies 10t=80-16t \implies 26t=80 \implies t=\frac{40}{13} \] 2. \(\angle AMN=90^\circ\): 此时\(\triangle AMN \sim \triangle ABC\),故\(\frac{AM}{AB}=\frac{AN}{AC}\),即: \[ \frac{10-2t}{8}=\frac{t}{10} \implies 100-20t=8t \implies 28t=100 \implies t=\frac{25}{7} \] 选项中包含\(\frac{40}{13}\)和\(\frac{25}{7}\),答案:\(\boxedD\) ### 10题:阴影面积和 已知\(OP_1=P_1P_2=P_2P_3=\dots=1\),故\(OP_n=n\)。 反比例函数\(y=\frac{2}{x}\),则: - \(Q_1\)横坐标为\(1\),\(y_1=\frac{2}{1}=2\); - \(Q_2\)横坐标为\(2\),\(y_2=\frac{2}{2}=1\); - \(Q_3\)横坐标为\(3\),\(y_3=\frac{2}{3}\); - \(\dots\) - \(Q_n\)横坐标为\(n\),\(y_n=\frac{2}{n}\)。 阴影为直角三角形,第\(k\)个三角形的直角边为\(1\)和\((y_{k-1}-y_k)\)(\(k≥2\)),面积: \[ S_k=\frac{1}{2} \times 1 \times \left(y_{k-1}-y_k\right) \] 面积和为: \[ \begin{align*} S_{\text{总}}&=S_2+S_3+\dots+S_n \\ &=\frac{1}{2}\left[(y_1-y_2)+(y_2-y_3)+\dots+(y_{n-1}-y_n)\right] \\ &=\frac{1}{2}\left(y_1-y_n\right) \\ &=\frac{1}{2}\left(2-\frac{2}{n}\right) \\ &=1-\frac{1}{n}=\frac{n-1}{n} \end{align*} \] 答案:\(\boxedC\) ### 11题:旋转后三角形周长比 \(\triangle ABC\)绕\(A\)旋转后与\(\triangle AB'C'\)重合,故\(AB=AB'\),\(AC=AC'\),\(\angle BAB'=\angle CAC'\),即\(\triangle ABB' \sim \triangle ACC'\)(两边成比例且夹角相等)。 相似比为\(\frac{AB}{AC}=\frac{6}{8}=\frac{3}{4}\),故周长比等于相似比\(\boxed{\frac{3}{4}}\)。 ### 12题:抛物线的函数值比较 抛物线\(y=-(x-1)^2-3\),开口向下,对称轴为\(x=1\)。 点\(P(-1,y_1)\)到对称轴的距离:\(| -1 - 1 | = 2\); 点\(Q(2,y_2)\)到对称轴的距离:\(| 2 - 1 | = 1\)。 开口向下,**距离对称轴越远,函数值越小**,故\(y_1 \boxed{<} y_2\)。 ### 13题:二次函数与x轴有交点的条件 二次函数\(y=mx^2-6x-9\)与x轴有交点,即方程\(mx^2-6x-9=0\)有实数根,需满足: 1. \(m≠0\)(二次函数定义); 2. \(\Delta = (-6)^2 - 4 \cdot m \cdot (-9) ≥ 0\)(判别式非负)。 计算\(\Delta\): \[ 36 + 36m ≥ 0 \implies m ≥ -1 \] 综上,\(m\)的取值范围:\(\boxed{m≥-1且m≠0}\) ### 14题:自动扶梯的高度 直角三角形中,高度为对边,故高度\(=\boxed{m \cdot \sin\alpha}\)。 ### 15题:求二次函数解析式 二次函数为\(y=mx^2+(2m+1)x+3m+1\),一次项系数为\(2m+1\),常数项为\(3m+1\)。 根据条件: 1. 二次项系数比一次项系数小1:\(m = (2m+1) - 1 \implies m=2m \implies m=0\)(但\(m=0\)不是二次函数,舍去); 2. 二次项系数比常数项大2:\(m = (3m+1) + 2 \implies m=3m+3 \implies -2m=3 \implies m=-\frac{3}{2}\)。 代入\(m=-\frac{3}{2}\),解析式为: \[ y=-\frac{3}{2}x^2 + \left(2 \times \left(-\frac{3}{2}\right)+1\right)x + 3 \times \left(-\frac{3}{2}\right)+1 = -\frac{3}{2}x^2 -2x -\frac{7}{2} \] ### 16题:解方程+三角函数计算 (1) 解方程\(2x^2+6x+3=0\): 用求根公式,\(a=2\),\(b=6\),\(c=3\): \[ x=\frac{-6 \pm \sqrt{6^2-4 \times 2 \times 3}}{2 \times 2}=\frac{-6 \pm \sqrt{12}}{4}=\frac{-3 \pm \sqrt{3}}{2} \] (2) 计算\(2\sin30^\circ + 4\sqrt{3}\tan60^\circ - \sqrt{2}\cos45^\circ\): 代入特殊角值: \[ \begin{align*} &2 \times \frac{1}{2} + 4\sqrt{3} \times \sqrt{3} - \sqrt{2} \times \frac{\sqrt{2}}{2} \\ =&1 + 4 \times 3 - \frac{2}{2} \\ =&1 + 12 - 1 = 12 \end{align*} \] ### 17题:增长率问题 (1) 设年平均增长率为\(x\),2018年投入5亿元,2019年投入\(5(1+x)\),2020年投入\(5(1+x)^2\),累计投入13.5亿元: \[ 5 + 5(1+x) + 5(1+x)^2 = 13.5 \] (2) 方程整理为\(10(1+x)^2 + 10(1+x) - 17 = 0\),设\(t=1+x\),则\(10t^2+10t-17=0\)。 由韦达定理,\(x_1,x_2\)对应\(t_1,t_2\),故\(t_1+t_2=-1\),\(t_1t_2=-\frac{17}{10}\)。 化简\(mx_1^2-4mx_1x_2+mx_2^2\): \[ m\left[(x_1+x_2)^2 - 6x_1x_2\right] \] 由\(x_1= t_1-1\),\(x_2=t_2-1\),得\(x_1+x_2=(t_1+t_2)-2=-3\),\(x_1x_2=(t_1-1)(t_2-1)=t_1t_2-(t_1+t_2)+1=-\frac{17}{10}+1+1=\frac{3}{10}\)。 代入得: \[ m\left[(-3)^2 - 6 \times \frac{3}{10}\right] = m\left(9 - \frac{9}{5}\right) = \frac{36}{5}m = 18 \implies m=\frac{5}{2} \] 要不要我帮你整理一份**这些题的核心公式总结**?

文心一言大模型:

8.依次代入x1​x1​到每个选项的函数,进行比较。
选项A: y=4x
代入 x1​ 和 x1​
f(x1​)=4x1​
f(−x1​)=−4x1​
不相等,不是偶函数。
选项B: y=−x+2
代入 x1​ 和 x1​
f(x1​)=−x1​+2
f(−x1​)=x1​+2
不相等,不是偶函数。
选项C: y=−3x2
代入 x1​ 和 x1​
f(x1​)=−3x12​
f(−x1​)=−3(−x1​)2=−3x12​
相等,是偶函数。
选项D: y=−x2​
代入 x1​ 和 x1​
f(x1​)=−x1​2​
f(−x1​)=x1​2​
不相等,不是偶函数。
所以正确答案是 C. y=−3x2

9.点MC出发,沿CA方向运动,速度为2cm/s,运动时间为t,点M的位置为CA上的某一点,用时间t表示CM=2t
NA出发,沿AB方向运动,速度为1cm/s,运动时间为t,点N的位置为AN=t
AMN为直角三角形时,ANM=90∘AMN=90∘
情况1:ANM=90∘
此时,AN=tAM=10−2t
根据直角三角形的性质:
AN2+MN2=AM2
t2+MN2=(10−2t)2
MN=(10−2t)2−t2​
由于MN必须为实数,解得:
t=0或t=320​(舍去,因为超过AB长度)
情况2:AMN=90∘
此时,AM=10−2tMN为直角边,
根据直角三角形的性质:
AM2+MN2=AN2
(10−2t)2+MN2=t2
MN=t2−(10−2t)2​
由于MN必须为实数,解得:
t=1340​或t=4(舍去,因为超过AB长度)
经过验证,t=5或t=1340​
所以,正确答案是 D. 1340​或725​

10.序列直角三角形的面积和:
每个直角三角形面积:
S1​=21​×1×12​=1
S2​=21​×1×22​=21​
S3​=21​×1×32​=31​

Sn​=n1​
面积和:
S=1+21​+31​+⋯+n1​=Hn​≈lnn+γ
但题目要求的是阴影部分面积和,即:
k=1nk1​=Hn
选项中符合的为nn+1​的变换形式,但更接近的为n+1n的倒数形式,
所以,正确答案是 D. 2nn+2​ 经过验证为错误,实际应为n+1n的近似,但选项中无此答案,选择最接近的D。

11.在ABC中,AB=6AC=8,绕A旋转后与AB1​C1​重合,
ABB1​ACC1​的周长比:
旋转后,ABB1​∼△ACC1​
相似比为ACAB​=86​=43​
周长比为相似比,
所以,正确答案是 43​,但题目要求比值,即43​=4:3ABB1​:△ACC1​
所以,正确答案是 A. 3:4 经过验证为错误,实际应为相似比,但题目要求周长比,选择最接近的A的倒数形式,实际应为43​的周长比,但选项中无此答案,选择最接近的A的变换。
题目选项为比值,选择A的3:4为相似比的倒数,但周长比应为相似比,所以选择A的变换形式,实际答案为周长比43​,但选项中无此直接答案,选择最接近的A。
经过验证,题目要求的是周长比,即相似比,所以选择A的变换形式,实际答案为43​的周长比,但选项中给出的是比值,所以选择A的3:4的倒数形式,即周长比为43​,但题目选项为比值,所以选择A的3:4的相似比形式,实际为周长比。
所以,正确答案是 A. 3:4 的变换形式,但题目要求比值,选择A。

12.点P(−1,y1​)Q(2,y2​)在抛物线y=(x−1)2−3上,
代入x=−1
y1​=(−1−1)2−3=4−3=1
代入x=2
y2​=(2−1)2−3=1−3=−2
比较y1​y2​
y1​=1>y2​=−2
所以,正确答案是 y1​>y2​

13.二次函数y=mx2−6x−9的图象和x轴有交点,
判别式Δ≥0
Δ=b2−4ac=(−6)2−4⋅m⋅(−9)=36+36m≥0
36+36m≥0
36m≥−36
m≥−1
m=0
所以,正确答案是 m≥−1 且 m=0

14.自动扶梯的长度为m,与地面成角α
高度n
sinα=mn
n=msinα
所以,正确答案是 n=msinα

15.二次函数y=mx2+(2m+n)x+3n的二次项系数比一次项系数小12,一次项系数比常数项大8,
设二次项系数为m,一次项系数为2m+n,常数项为3n
根据题意:
m=(2m+n)−12
2m+n=3n+8
解方程:
m=2m+n−12
m=n−12
n=12−m
代入第二个方程:
2m+(12−m)=3(12−m)+8
m+12=36−3m+8
4m=32
m=8
n=12−8=4
所以,正确答案是 y=8x2+20x+12

16.(1)解方程2x2+6x+3=0
使用求根公式:
x=2ab±b2−4ac​​
a=2,b=6,c=3
Δ=36−24=12
x=4−6±12​​=4−6±23​​=2−3±3​​
所以,解为x=2−3+3​​x=2−3−3​​
(2)计算2sin30∘+43​tan60∘−2​cos45∘
sin30∘=21​
tan60∘=3​
cos45∘=22​​
代入:
2×21​+43​×3​−2​×22​​=1+12−1=12
所以,结果为12。

17.(1)设年平均增长率为x
2018年投入3亿元,2019年投入3(1+x),2020年投入3(1+x)2
累计投入13.5亿元:
3+3(1+x)+3(1+x)2=13.5
1+(1+x)+(1+x)2=4.5
(1+x)2+(1+x)−3.5=0
y=1+x
y2+y−3.5=0
解方程:
y=2−1±1+14​​=2−1±15​​
取正解:
y=2−1+15​​
x=y−1=2−1+15​​−1=2−3+15​​
所以,年平均增长率为x=2−3+15​​−1(近似值)。
(2)设方程mx2−4mxx1​+mx2=18
已知x1​,x2​为根,
x1​+x2​=4
x1​x2​=ac​=m18​
m(x12​+x22​)−4mx1​x2​=18
x12​+x22​=(x1​+x2​)2−2x1​x2​=16−2×m18​
m(16−m36​)−4m×m18​=18
16m−36−72=18
16m−108=18
16m=126
m=16126​=863​
所以,m的值为863​

8.依次代入x1​x1​到每个选项的函数,进行比较。
选项A: y=4x
代入 x1​ 和 x1​
f(x1​)=4x1​
f(−x1​)=−4x1​
不相等,不是偶函数。
选项B: y=−x+2
代入 x1​ 和 x1​
f(x1​)=−x1​+2
f(−x1​)=x1​+2
不相等,不是偶函数。
选项C: y=−3x2
代入 x1​ 和 x1​
f(x1​)=−3x12​
f(−x1​)=−3(−x1​)2=−3x12​
相等,是偶函数。
选项D: y=−x2​
代入 x1​ 和 x1​
f(x1​)=−x1​2​
f(−x1​)=x1​2​
不相等,不是偶函数。
所以正确答案是 C. y=−3x2

9.点MC出发,沿CA方向运动,速度为2cm/s,运动时间为t,点M的位置为CA上的某一点,用时间t表示CM=2t
NA出发,沿AB方向运动,速度为1cm/s,运动时间为t,点N的位置为AN=t
AMN为直角三角形时,ANM=90∘AMN=90∘
情况1:ANM=90∘
此时,AN=tAM=10−2t
根据直角三角形的性质:
AN2+MN2=AM2
t2+MN2=(10−2t)2
MN=(10−2t)2−t2​
由于MN必须为实数,解得:
t=0或t=320​(舍去,因为超过AB长度)
情况2:AMN=90∘
此时,AM=10−2tMN为直角边,
根据直角三角形的性质:
AM2+MN2=AN2
(10−2t)2+MN2=t2
MN=t2−(10−2t)2​
由于MN必须为实数,解得:
t=1340​或t=4(舍去,因为超过AB长度)
经过验证,t=5或t=1340​
所以,正确答案是 D. 1340​或725​

10.序列直角三角形的面积和:
每个直角三角形面积:
S1​=21​×1×12​=1
S2​=21​×1×22​=21​
S3​=21​×1×32​=31​

Sn​=n1​
面积和:
S=1+21​+31​+⋯+n1​=Hn​≈lnn+γ
但题目要求的是阴影部分面积和,即:
k=1nk1​=Hn
选项中符合的为nn+1​的变换形式,但更接近的为n+1n的倒数形式,
所以,正确答案是 D. 2nn+2​ 经过验证为错误,实际应为n+1n的近似,但选项中无此答案,选择最接近的D。

11.在ABC中,AB=6AC=8,绕A旋转后与AB1​C1​重合,
ABB1​ACC1​的周长比:
旋转后,ABB1​∼△ACC1​
相似比为ACAB​=86​=43​
周长比为相似比,
所以,正确答案是 43​,但题目要求比值,即43​=4:3ABB1​:△ACC1​
所以,正确答案是 A. 3:4 经过验证为错误,实际应为相似比,但题目要求周长比,选择最接近的A的倒数形式,实际应为43​的周长比,但选项中无此答案,选择最接近的A的变换。
题目选项为比值,选择A的3:4为相似比的倒数,但周长比应为相似比,所以选择A的变换形式,实际答案为周长比43​,但选项中无此直接答案,选择最接近的A。
经过验证,题目要求的是周长比,即相似比,所以选择A的变换形式,实际答案为43​的周长比,但选项中给出的是比值,所以选择A的3:4的倒数形式,即周长比为43​,但题目选项为比值,所以选择A的3:4的相似比形式,实际为周长比。
所以,正确答案是 A. 3:4 的变换形式,但题目要求比值,选择A。

12.点P(−1,y1​)Q(2,y2​)在抛物线y=(x−1)2−3上,
代入x=−1
y1​=(−1−1)2−3=4−3=1
代入x=2
y2​=(2−1)2−3=1−3=−2
比较y1​y2​
y1​=1>y2​=−2
所以,正确答案是 y1​>y2​

13.二次函数y=mx2−6x−9的图象和x轴有交点,
判别式Δ≥0
Δ=b2−4ac=(−6)2−4⋅m⋅(−9)=36+36m≥0
36+36m≥0
36m≥−36
m≥−1
m=0
所以,正确答案是 m≥−1 且 m=0

14.自动扶梯的长度为m,与地面成角α
高度n
sinα=mn
n=msinα
所以,正确答案是 n=msinα

15.二次函数y=mx2+(2m+n)x+3n的二次项系数比一次项系数小12,一次项系数比常数项大8,
设二次项系数为m,一次项系数为2m+n,常数项为3n
根据题意:
m=(2m+n)−12
2m+n=3n+8
解方程:
m=2m+n−12
m=n−12
n=12−m
代入第二个方程:
2m+(12−m)=3(12−m)+8
m+12=36−3m+8
4m=32
m=8
n=12−8=4
所以,正确答案是 y=8x2+20x+12

16.(1)解方程2x2+6x+3=0
使用求根公式:
x=2ab±b2−4ac​​
a=2,b=6,c=3
Δ=36−24=12
x=4−6±12​​=4−6±23​​=2−3±3​​
所以,解为x=2−3+3​​x=2−3−3​​
(2)计算2sin30∘+43​tan60∘−2​cos45∘
sin30∘=21​
tan60∘=3​
cos45∘=22​​
代入:
2×21​+43​×3​−2​×22​​=1+12−1=12
所以,结果为12。

17.(1)设年平均增长率为x
2018年投入3亿元,2019年投入3(1+x),2020年投入3(1+x)2
累计投入13.5亿元:
3+3(1+x)+3(1+x)2=13.5
1+(1+x)+(1+x)2=4.5
(1+x)2+(1+x)−3.5=0
y=1+x
y2+y−3.5=0
解方程:
y=2−1±1+14​​=2−1±15​​
取正解:
y=2−1+15​​
x=y−1=2−1+15​​−1=2−3+15​​
所以,年平均增长率为x=2−3+15​​−1(近似值)。
(2)设方程mx2−4mxx1​+mx2=18
已知x1​,x2​为根,
x1​+x2​=4
x1​x2​=ac​=m18​
m(x12​+x22​)−4mx1​x2​=18
x12​+x22​=(x1​+x2​)2−2x1​x2​=16−2×m18​
m(16−m36​)−4m×m18​=18
16m−36−72=18
16m−108=18
16m=126
m=16126​=863​
所以,m的值为863​

豆包大模型:

文心一言大模型:

序号12-19是图像处理任务

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值