Jerichopromax
码龄2年
求更新 关注
提问 私信
  • 博客:2,150
    2,150
    总访问量
  • 7
    原创
  • 2
    粉丝
  • 0
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
加入CSDN时间: 2024-01-12
博客简介:

2401_82593709的博客

查看详细资料
个人成就
  • 获得38次点赞
  • 内容获得0次评论
  • 获得30次收藏
  • 博客总排名118,582名
  • 原力等级
    原力等级
    1
    原力分
    20
    本月获得
    20
创作历程
  • 7篇
    2025年
成就勋章

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

人工智能通识课体验大语言模型

序号考察能力题目回复评价1逻辑推理一个人带一只黄狗、一只白兔和一颗白菜过河,河边只有一条小船,此人每次只能带一样东西过河,如果此人不在,黄狗要咬白兔,白兔要啃白菜。请想一想:既不让黄狗咬白兔,又不让白兔啃白菜,该怎么设计过河方案豆包大模型:要解决这个问题,核心是始终让黄狗和白兔、白兔和白菜在无人看管时处于河的两岸,具体过河方案分 7 步:人先带着白兔过河,到达对岸后,人独自划船返回。(此时:对岸只有白兔;出发岸有黄狗、白菜、人)人带着黄狗过河,到达对岸后,人带着白兔划船返回。(此时:对岸只有黄狗;出发岸有白
原创
博文更新于 4 小时前 ·
699 阅读 ·
23 点赞 ·
0 评论 ·
5 收藏

人工智能通识课书本作业1

原创
博文更新于 14 小时前 ·
36 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

人工智能图像处理

cv2读取图像调整亮度1.5, image,00裁剪图像04000400显示图像0。
原创
博文更新于 2025.12.05 ·
126 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

人工智能自然语言处理经典模型

自注意力机制(Self-Attention)是深度学习中的一种机制,允许模型在处理序列数据(如句子)时,动态计算不同位置之间的关联权重。通过这种方式,模型可以捕捉序列中任意两个词之间的依赖关系,无论它们距离多远。工作原理简述:对输入序列中的每个词,计算其与所有词的“注意力分数”,反映词与词之间的相关性。根据分数加权求和,得到每个词的上下文感知表示。
原创
博文更新于 2025.12.02 ·
382 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

人工智能通识课作业

(将一张图片的风格应用到另一张图片上)。(将低分辨率图像变清晰)。(为训练集生成新的样本)。
原创
博文更新于 2025.11.14 ·
128 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

人工智能通识课,训练基于线性回归算法预测房价的机器学习模型

plt.scatter(data.loc[:,'人均收入'],data.loc[:,'价格']) # x轴=人均收入,y轴=价格。plt.scatter(data.loc[:,'平均房龄'],data.loc[:,'价格'])# x轴=房龄,y轴=价格。print(X.shape,y.shape) # 打印形状:X是(n_samples, 3),y是(n_samples,)plt.scatter(data.loc[:,'面积'],data.loc[:,'价格'])# x轴=面积,y轴=价格。
原创
博文更新于 2025.10.31 ·
407 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏

人工智能通识课作业

原创
博文更新于 2025.10.19 ·
377 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏