自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(999)
  • 收藏
  • 关注

原创 随机信号处理篇---理想白噪声

理想白噪声是一种理论模型,具有三大特性:零均值、无限带宽和恒定功率谱密度。其自相关函数为狄拉克δ函数,表明任意两个不同时刻完全不相关。在频域上表现为所有频率成分功率相等,故类比白光称为白噪声。虽然物理不可实现(无限带宽和功率),但它是工程分析的重要工具:作为系统频率响应的探针、理论推导的简化基础,以及评估通信系统性能的基准(如AWGN信道)。

2025-12-14 23:56:27 850

原创 随机信号处理篇---等效噪声带宽

等效噪声带宽(ENBW)是将实际滤波器的噪声通过能力等效为理想矩形滤波器带宽的关键参数。不同于-3dB带宽描述频率选择性,ENBW通过积分滤波器幅频响应平方,量化其总噪声吞吐量,使复杂噪声功率计算简化为。其值受滤波器类型和阶数影响:阶数越高,ENBW越接近-3dB带宽。ENBW在接收机灵敏度分析和系统噪声优化中至关重要,是理论与实际噪声评估的实用桥梁。

2025-12-14 23:52:28 764

原创 随机信号处理篇---高斯随机过程特殊等价

高斯随机过程具有独特的数学特性,使其在工程应用中极为重要。首先,其任意有限维分布都服从联合高斯分布。其次,在高斯过程中,不相关性等价于独立性,宽平稳性等同于严平稳性。此外,高斯过程经过线性变换后仍保持高斯性,极大简化了系统分析。最后,高斯过程的最优估计器是线性的,如维纳滤波和卡尔曼滤波。这些特性源于高斯分布仅由一阶和二阶矩完全刻画,使其成为理论与工程实践的理想桥梁。

2025-12-14 23:44:42 772

原创 随机信号处理篇---高斯分布的独立-不相关-正交

本文通过办公室员工的比喻,阐释了统计独立性、不相关性和正交性三个概念的区别与联系。对于普通员工(任意分布),三者互不相同;对于高斯员工(联合高斯分布),不相关性与统计独立性等价;对于零均值高斯员工,三者完全等价。这一特性在信号处理中尤为重要,使得工程师只需验证不相关性即可确认独立性,大大简化了高斯噪声的分析处理过程。核心结论是:在高斯分布下,不相关性成为判断独立性的可靠指标。

2025-12-14 23:37:33 690

原创 、随机信号处理篇---特征函数与各阶矩关系

特征函数是概率分布的全息DNA,通过傅里叶变换将概率信息编码为频率谱。它不仅能完整刻画随机变量的统计特性,还能通过简单求导操作生成各阶矩:一阶导数得均值,二阶导数得方差,以此类推。相比矩母函数,特征函数具有更广泛的适用性,几乎对所有分布都存在。在处理独立随机变量之和时,特征函数的乘积特性使其比卷积积分更简便,成为证明中心极限定理等概率极限理论的利器。这种概率X光机通过一次扫描就能获取分布的全部信息,是概率论中强大而通用的分析工具。

2025-12-14 23:21:47 895

原创 随机信号篇---统计独立

本文通过大学食堂中三个生动情景,阐释概率论中独立性概念的本质:1)陌生人情景展示完全独立的随机变量特征;2)情侣情景揭示正相关的非独立关系;3)竞争对手情景呈现负相关的非独立关系。文章提出判断独立性的灵魂三问方法论:信息泄露测试、概率乘法法则、边缘联合关系分析。特别强调统计独立与互不相关的关键区别:独立意味着完全无关联(相关系数和非线性关系均为零),而不相关仅排除线性关系。

2025-12-14 22:25:00 516

原创 随机信号篇---中心极限定理

中心极限定理揭示了多个独立随机变量之和或均值趋向正态分布的现象。以骰子为例,单个骰子呈均匀分布,但多个骰子总和的概率分布会形成钟形曲线。该定理表明,无论原始分布如何,只要样本量足够大,其均值分布都会逼近正态分布。这种现象在质量控制、考试成绩、民意调查等实际应用中普遍存在,如同合唱团中个体音准误差相互抵消形成和谐整体。中心极限定理是统计学的重要基石,展现了随机事件集体表现中的有序规律。

2025-12-14 22:15:19 822

原创 随机信号篇---各态历经性

各态历经性指一个平稳随机过程的时间平均等于集平均,意味着单个样本在长时间内的行为可以反映整体统计特性。通过森林温度测量和网民上网时长两个例子,说明时间平均(单一样本长期观测)与集平均(同一时刻所有样本观测)的区别。用各态历经鱼的比喻形象说明:若鱼塘生态系统稳定,一条鱼一生的体重变化可以代表所有鱼类的体重分布。各态历经性对工程实践至关重要,它允许通过单次长期测量来推断整体特性,是连接理论与实践的桥梁。

2025-12-14 22:07:29 521

原创 随机信号篇---遍历与平稳

本文通过中国人身高变迁的案例,阐释了随机过程中平稳性与遍历性的核心概念。平稳性指统计特性(均值、方差等)不随时间变化,如假设2000年后中国人身高分布达到稳定状态。遍历性则是在平稳性基础上更强的性质,允许用单个样本的时间平均替代总体平均,如通过跟踪一个人的一生身高来推断全国数据。文章强调平稳性是遍历性的基础,但并非所有平稳过程都具有遍历性,并举出反例说明。最后用鱼塘生态的比喻形象化这两大概念的关系,指出遍历性使单个样本能反映整体统计特性,极大简化了实际测量与分析工作。

2025-12-14 21:59:13 853

原创 通信原理篇---有效性和可靠性的具体参数

本文通过运输物流的比喻,系统讲解了通信系统的有效性(传输效率)和可靠性(传输质量)两大核心指标的计算方法。在有效性方面,重点解析了比特率、波特率、频带利用率的计算关系,并引入香农公式揭示理论传输极限;在可靠性方面,详细阐述了误码率、信噪比的计算方法,分析了不同调制方式对传输质量的影响,以及编码技术带来的性能提升。文章采用类比方式,将专业概念转化为通俗易懂的物流场景,帮助读者理解通信系统设计中速度与质量的平衡关系,并提供了完整的参数分析框架。全文通过生动比喻和实例计算,深入浅出地展现了通信系统设计的核心原理。

2025-12-12 23:52:36 1270

原创 通信原理篇---有效性和可靠性

本文以快递公司为类比,生动解释了通信原理中的有效性和可靠性两大核心概念。有效性关注信息传输效率,通过调制技术(如QAM)、频带利用(如OFDM)和信源编码(如MP3)实现多拉快跑;可靠性则确保信息准确传输,借助信道编码(如Turbo码)、均衡技术和分集传输(如MIMO)为信息保驾护航。文章特别强调两者之间存在矛盾关系,通信系统设计需要根据具体需求(如微信图片传输与银行转账)寻找平衡点。

2025-12-12 23:50:00 707

原创 数字信号处理---Z变换

Z变换是分析离散时间信号的强大数学工具,其核心是将时域序列转换为复平面上的函数。主要特点包括:1)通过时间权重z⁻ⁿ将离散序列转换为复变函数;2)能简化差分方程求解,将递归计算变为代数运算;3)零极点分析可直观判断系统特性。Z变换具有线性性、时移特性、尺度变换等重要性质,其收敛域(ROC)决定了变换的唯一性。应用领域涵盖系统分析、滤波器设计、数字控制等。理解Z变换需要把握时域与Z域的对应关系,以及ROC、零极点的物理意义,这种思维方式有助于深入理解离散系统的本质特性。

2025-12-11 21:09:38 799

原创 数字信号处理篇---傅里叶变换

本文简单介绍了傅里叶变换以及常见的傅里叶变换对。

2025-12-11 20:59:22 586

原创 数字信号处理篇---卷积

本文通过厨房烹饪的生动比喻,系统讲解了卷积的三大基础类型及其应用。连续卷积类比调酒过程,离散卷积类似烤肉串调味,循环卷积则像回转寿司。文章详细阐释了卷积的六大性质(交换律、结合律等),并介绍了平滑核、边缘检测核和锐化核三种常见卷积核的功能。特别对比了传统卷积与CNN卷积的区别,指出后者通过数据学习参数。最后强调卷积不仅是数学工具,更是一种思维方式,帮助我们理解加权历史影响下的系统行为。全文用烹饪案例将抽象概念具象化,使信号处理理论变得生动易懂。

2025-12-11 19:51:57 659

原创 数字信号处理篇---循环卷积和线性卷积

卷积是一种加权滑动平均操作,分为线性卷积和循环卷积两种。线性卷积模拟真实物理过程(如信号通过系统),结果长度为M+N-1,需两端补零处理边界。循环卷积是数学工具,通过DFT/FFT高效计算,结果长度固定为N,采用循环移位处理边界。两者相等的关键在于补零:将序列补零至长度≥M+N-1后,循环卷积结果等同于线性卷积。线性卷积反映物理本质,循环卷积提供计算效率,补零技术是实现两者等效的桥梁。

2025-12-11 19:41:17 841

原创 数字信号处理篇---时域分辨率和频域分辨率

文章通过交响乐比喻阐释时域与频域分辨率的矛盾关系。高时域分辨率(如定位鼓点时刻)需要短时间窗,而高频域分辨率(如判断小提琴音高)需要长时间窗,二者此消彼长。这种时频不确定性原理类似量子力学中的测不准关系,表现为Δ𝑡·Δ𝑓≥常数。现实应用(如心电图、音乐谱或STFT分析)需根据需求权衡窗口长度,就像选择矮胖(时间精准)或高瘦(频率精准)的时频分析瓷砖。

2025-12-11 19:25:17 685

原创 数字信号处理篇---Sa函数

Sinc函数(Sa(t)=sin(t)/t)是信号处理中的核心函数,具有振荡衰减特性,在t=0处达到峰值1,在整数点位置过零点。它作为理想低通滤波器的时域表现,揭示了时域与频域的根本矛盾:时域无限扩展对应频域完美矩形,反之亦然。其主瓣集中主要能量,旁瓣则造成能量泄露,这成为滤波器设计中主瓣宽度与旁瓣抑制的权衡关键。该函数体现了信号处理的基本原理,是连接离散采样与连续信号的重要桥梁,也是海森堡不确定性原理在信号领域的体现。

2025-12-11 19:06:27 575

原创 随机信号篇---特征函数

特征函数是概率分布的频域身份证,通过傅里叶变换将概率密度函数转换到频域。其核心价值在于:将复杂的卷积运算转化为简单的乘法运算,使独立随机变量和的分布计算变得简便。特征函数具有唯一性、矩生成等特性,可类比DNA组合、食材混合等直观理解。它在中心极限定理证明、金融风险分析等领域有重要应用,虽然存在复数运算等局限性,但仍是概率论与调和分析的重要桥梁。

2025-12-11 19:04:12 617

原创 随机信号篇---平稳随机过程的相关时间

相关时间是衡量随机过程记忆长度的关键参数,表示过去信息对当前状态的影响持续时间。其本质可通过三种方式理解:墨水扩散(均匀化时间)、弹簧振动(振幅衰减时间)和气味消散(有效持续时间)。常用数学定义为自相关函数积分面积对应的宽度。实际应用中,相关时间决定了信号采样间隔、系统响应时间等关键参数,与信号带宽成反比关系(τ_c ∝ 1/Δf)。测量时需注意样本长度应远大于相关时间,不同衰减特性的信号(如指数/幂律衰减)需采用相应计算方法。

2025-12-11 18:49:01 751

原创 随机信号篇---常见的特殊分布

本文通过河流比喻形象地介绍了多种随机过程:平稳过程(尼罗河)、泊松过程(瀑布水花)、马尔可夫过程(亚马逊河)、维纳过程(布朗运动)、自回归过程(惯性河流)、周期过程(潮汐河)和混合过程(长江)。每种过程对应不同的数学特征和实际应用场景,如金融建模、信号处理和自然现象分析。文章强调现实世界的复杂性往往需要组合多种过程模型,并提供了识别不同过程的实用技巧。最后指出,掌握这些随机过程工具对工程实践具有重要意义。

2025-12-11 18:13:52 549

原创 随机信号篇---均值、方差、均方值、相关函数、协方差函数

本文通过班级成绩分析的生动比喻,系统讲解了信号处理中的核心统计概念。以A班和B班的数学成绩为例,详细阐释了均值(班级平均分)、方差(成绩离散程度)、均方值(总波动幅度)的计算方法及其物理意义。重点揭示了均方值=均值²+方差的黄金关系,类比为总功率=直流功率+交流功率。进一步通过互相关和自相关函数分析班级成绩的相似性,并引入协方差和相关系数衡量成绩波动的关联程度。

2025-12-11 18:04:45 587

原创 随机信号篇---时谱&频谱&功率谱

本文通过宫保鸡丁的味觉分析,生动阐述了信号分析的四种方法:时谱记录信号随时间的变化(如品尝过程);频谱分解信号的成分比例(如味道配方);功率谱量化各成分强度(如辣度等级);时频谱则展现频率随时间的变化(如味道演化)。这四种方法构成信号分析的完整框架:时谱与频谱互为补充,功率谱是频谱的能量版本,时频谱实现时空统一。该框架广泛应用于医学、通信、地质等领域,犹如信号分析的四重奏——时谱是乐谱,频谱是和弦,功率谱是音量,时频谱则是钢琴卷帘,共同揭示信号的完整特征。

2025-12-10 21:58:29 846

原创 随机信号篇---维纳-辛钦定理

维纳-辛钦定理揭示了信号时域与频域的对偶性:自相关函数(时域规律)与功率谱密度(频域能量分布)可通过傅里叶变换相互转换。定理表明,信号的周期性、相关性等时域特性与其频率成分分布完全等价。例如,白噪声的瞬时相关性对应平坦频谱,而正弦波的周期自相关对应单一频率峰值。该定理为雷达、语音识别等工程应用提供了等效的双重分析路径(时域相关法或频域谱分析法),并成为理解随机信号、高斯过程及深度学习频域行为的基础工具。核心结论是:信号在时域的相关性宽度与频域的频谱宽度成反比,这一关系构成了信号处理的直觉基石。

2025-12-10 20:54:38 943

原创 随机信号篇---功率谱密度

功率谱密度(PSD)是分析信号频率特性的重要工具,它通过分解信号在不同频率上的功率分布来揭示其内在结构。文章通过拳击手发力、鸡尾酒分层等生动比喻,直观解释了PSD的概念和计算方法。核心内容包括:PSD的时频转换思想、维纳-辛钦定理、实际应用场景(如脑电波分析、机械振动检测)以及常见误区。特别强调了PSD与能量谱密度的区别,并提供了心电图分析的计算实例。该工具能有效识别信号主频特征,是工程、医学等领域分析复杂信号的关键方法。

2025-12-10 20:38:51 916

原创 随机信号篇---相关系数

相关系数衡量两个变量变化的同步程度,范围在-1到1之间。正数表示同向变化,负数表示反向变化,绝对值越大关系越强。通过计算偏离均值的同步程度得出结果,1表示完全正相关(如小明和小红的互动次数)。相关系数能揭示变量间的线性关系(如身高体重),但无法说明因果关系,也不能反映非线性关联。实际应用中,皮尔逊相关系数最常用,而斯皮尔曼和肯德尔系数适用于非线性或小样本数据。需注意相关系数不是百分比,强相关未必有实际意义。

2025-12-10 20:23:37 760

原创 随机信号篇---高斯过程的独立、相关、正交

高斯过程在温度预测中的特殊判断方法:对于联合高斯分布的城市温度数据,零相关即意味着完全独立(无需额外检验),正交性在零均值时可简化为不相关,条件独立性可通过相关系数乘积直接判断。这种特性大幅简化了气象建模,使空间和时间维度的独立性判断转化为简单的线性相关性分析。但需警惕非高斯数据误用、均值未中心化和小样本误差三大陷阱。通过验证高斯性、数据中心化、计算相关系数矩阵和应用高斯特性四步法,可高效实现温度预测中的变量关系判断。

2025-12-10 18:47:33 573

原创 随机信号篇---高斯过程

高斯过程被形象比喻为乐高积木系统,其核心特性包括:1)线性变换后仍保持高斯性;2)不相关性等价于独立性;3)条件/边缘分布均为高斯;4)完全由均值函数和协方差函数确定。这些特性使其成为通信系统分析、信号处理和机器学习等领域的理想工具,但也存在对称性限制、尾部衰减过快等局限。高斯过程因其数学简洁性和广泛适用性,被视为随机过程中的理想气体模型。

2025-12-10 18:41:29 519

原创 随机信号篇---独立、相关、正交

本文通过学生考试成绩的比喻,系统阐述了独立性、相关性和正交性三个核心统计概念。独立性指两者完全无关联(如A的成绩不影响B);相关性描述线性关系方向(正/负相关);正交性则是向量空间的垂直关系。关键区别在于:独立必不相关,但不相关未必独立(可能存在非线性关系);零均值时正交与不相关等价。这些概念在通信、金融、机器学习等领域有重要应用,如Wi-Fi利用正交子载波避免干扰,投资组合依赖资产相关性管理风险。理解三者差异对数据分析至关重要:独立最强(完全无关),相关/正交可能隐含非线性关联。

2025-12-10 18:13:37 710

原创 随机信号篇---平稳&遍历&高斯

本文通过河流观测的生动比喻,阐述了随机信号处理中的三个核心概念:平稳性、遍历性和高斯性。平稳性指统计特性不随时间变化(如河流流速的季节性差异);遍历性意味着单点长期观测能反映整体特性(一个水文站数据代表全流域);高斯性描述变量服从钟形分布(流速波动符合自然常见模式)。这三个特性共同作用,使复杂随机现象变得可预测、可测量和可计算,为工程实践(如洪水预警系统)提供了简化模型和高效分析方法。理想情况下同时满足三特性的系统(如电子热噪声)最易处理,而实际应用中需根据具体情况组合使用这些概念。

2025-12-10 14:28:58 692

原创 随机信号篇---样本函数&随机变量&随机过程

本文通过河流监测站的比喻,系统阐释了随机过程的核心概念。随机变量被比作固定时刻水流速度的不确定性(如t=3秒时的可能速度值);样本函数则是某次具体实验记录的速度曲线(如某次10秒观测的确定数据);随机过程则包含所有时刻的随机变量集合或所有可能的样本函数集合,构成完整的概率框架。文章还介绍了平稳性(统计特性不随时间改变)和遍历性(单次长时观测可代表整体)等重要特性,并用电影剧本的类比强化理解。最后提出横切得现实,纵切得概率等记忆口诀,帮助区分三个核心概念在工程应用中的不同视角。

2025-12-10 14:12:06 893

原创 通信原理篇---高斯加性白噪声

高斯加性白噪声是通信系统中最基础的噪声模型,具有加性、白噪声、高斯分布和平稳性四大特征。它有两种表现形式:时域上表现为瞬时噪声电压n(t),服从高斯分布,用于分析瞬时信噪比和误码概率;频域上表现为功率谱密度N0,描述噪声功率在频率上的均匀分布,用于系统性能分析和香农容量计算。两者通过公式σ²=N0B相互关联,分别对应具体信号分析和系统理论评估。理解这两种表现形式及其转换关系,是掌握通信理论的关键基础。

2025-12-10 00:10:22 760

原创 通信原理篇---多进制传输

《单车道上的比特魔法:多进制编码如何突破通信极限》 文章通过快递车队的比喻,生动阐释了多进制编码提升通信效率的原理。在带宽受限的单车道上,通过将二进制信号升级为四进制(QPSK)、十六进制(16QAM)等更高阶调制,使每个信号符号携带更多比特信息,实现频谱效率倍增。然而,这种彩色魔法存在代价:高阶调制对噪声更敏感,需要更好的信道条件。现代通信系统采用自适应调制技术,根据实时信道质量动态切换调制阶数,在5G、Wi-Fi等场景中实现速度与稳定性的最佳平衡。

2025-12-09 23:38:24 749

原创 通信原理篇---信源编码&信道编码

本文通过“跨国运送名画”的比喻,形象解释了通信系统中的信源编码和信道编码。信源编码如同“压缩装箱师”,通过去除冗余(无损压缩)或保留关键信息(有损压缩)减少数据量,如将1GB油画压缩为10MB。信道编码则像“装甲押运队”,主动添加纠错冗余(如校验比特),确保数据传输时抵抗干扰和噪声,如将10MB数据包扩展为15MB并配备纠错能力。两者协同工作:信源编码提升效率,信道编码保障可靠性,共同实现高效稳定的通信,如同微信语音的压缩与纠错传输过程。

2025-12-09 23:33:10 593

原创 通信原理篇---再看波特率、比特率、带宽

本文通过五大经典通信场景,系统阐述了通信系统的核心运营原理。首先介绍三个基础公式:奈奎斯特极限、香农极限和实际比特率公式。然后详细分析了56K Modem、10M以太网、GSM手机、Wi-Fi5和100G光纤等典型场景,展示了不同条件下如何通过调制方式、编码技术和复用策略实现最优传输。最后总结出四句实战口诀,强调通信系统设计需要在带宽、信噪比和业务需求之间做出精准权衡。文章生动揭示了通信技术如何在物理极限内,根据不同场景特点采用相应策略实现最佳性能。

2025-12-09 23:13:36 869

原创 通信原理篇---滚降系数

本文通过智能水滴货车运输的比喻,深入浅出地解释了数字通信中的升余弦滚降滤波器原理。文章指出滚降系数α是带宽与性能的调节关键:α=0时(理想sinc脉冲)虽带宽利用率最高但易受干扰;α增大则通过牺牲部分带宽换取系统稳定性。文中给出了三种典型场景:α=0.5(均衡型)、α=1(高稳健型)和α=0.35(高效型),并强调工程师需根据实际需求(如带宽稀缺性、同步难度等)在0.2-1之间选择最佳α值。最终将α形象地比喻为提升系统可靠性的隧道拓宽费。

2025-12-09 22:57:59 848

原创 通信原理篇---码型发送滤波器与升余弦滚降

本文简单介绍了一下升余弦滚降滤波器。

2025-12-09 22:47:12 931

原创 通信原理篇---波特率、比特率、带宽

本文通过高速公路的比喻解释了通信中的三个核心概念:波特率、比特率和带宽。波特率(车流量)指每秒传输的符号数,比特率(货物流量)是实际传输的信息量,而带宽(道路宽度)决定了信道潜力。关键公式比特率=波特率×每符号比特数揭示了提高传输效率的两条路径:增加波特率或提升每符号信息量。带宽通过奈奎斯特准则限制最大波特率(约2倍带宽值)。实际应用中,如电话Modem通过高阶调制在窄带宽下实现高速率,而5G则利用宽带宽同时提升波特率和调制阶数。这三个概念共同构成了通信系统性能的基础框架。

2025-12-09 22:36:44 1219

原创 通信原理篇---码型

本文介绍了数字通信中常见的几种码型编码方式及其优缺点。文章以通俗易懂的比喻方式,解释了单极性不归零码、双极性不归零码、单极性归零码、曼彻斯特码、差分曼彻斯特码和米勒码等六种编码方法的工作原理。每种编码都面临数不清问题、直流分量问题和错误检测问题三大挑战,不同编码方式通过不同策略来解决这些问题。文章最后总结了各种编码的特点和适用场景,强调码型设计的关键在于在简单性、可靠性、带宽效率和能耗之间找到平衡。

2025-12-09 20:33:54 1055

原创 通信原理篇---奈奎斯特三大准则

本文简单介绍了一下奈奎斯特第一准则、奈奎斯特第二准则、奈奎斯特第三准则。

2025-12-08 23:41:52 592

原创 通信原理篇---PLL锁相环

锁相环(PLL)是一种实现输出信号与输入信号自动同步的控制系统。它由相位检测器(比较输入输出相位差)、环路滤波器(平滑误差信号)、压控振荡器(调整输出频率)和反馈回路组成闭环控制系统。PLL通过检测-滤波-调整-反馈"的工作循环,使本地信号精确跟踪外部信号,即使存在噪声和抖动也能保持同步。其核心应用包括信号净化、频率合成和调制解调,广泛应用于通信、时钟同步等领域。PLL就像智能舞蹈跟班,能在嘈杂环境中精确跟随领舞者的节奏变化。

2025-12-08 23:29:33 833

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除